EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Geist et al. 2006
Geist, D.J., Fornari, D.J., Kurz, M.D., Harpp, K.S., Adam Soule, S., Perfit, M.R. and Koleszar, A.M. (2006). Submarine Fernandina: Magmatism at the leading edge of the Galápagos hot spot. Geochemistry Geophysics Geosystems 7: doi: 10.1029/2006GC001290. issn: 1525-2027.

New multibeam and side-scan sonar surveys of Fernandina volcano and the geochemistry of lavas provide clues to the structural and magmatic development of Gal¿pagos volcanoes. Submarine Fernandina has three well-developed rift zones, whereas the subaerial edifice has circumferential fissures associated with a large summit caldera and diffuse radial fissures on the lower slopes. Rift zone development is controlled by changes in deviatoric stresses with increasing distance from the caldera. Large lava flows are present on the gently sloping and deep seafloor west of Fernandina. Fernandina's submarine lavas are petrographically more diverse than the subaerial suite and include picrites. Most submarine glasses are similar in composition to aphyric subaerially erupted lavas, however. These rocks are termed the "normal" series and are believed to result from cooling and crystallization in the subcaldera magma system, which buffers the magmas both thermally and chemically. These normal-series magmas are extruded laterally through the flanks of the volcano, where they scavenge and disaggregate olivine-gabbro mush to produce picritic lavas. A suite of lavas recovered from the terminus of the SW submarine rift and terraces to the south comprises evolved basalts and icelandites with MgO = 3.1 to 5.0 wt.%. This "evolved series" is believed to form by fractional crystallization at 3 to 5 kb, involving extensive crystallization of clinopyroxene and titanomagnetite in addition to plagioclase. "High-K" lavas were recovered from the southwest rift and are attributed to hybridization between normal-series basalt and evolved-series magma. The geochemical and structural findings are used to develop an evolutionary model for the construction of the Gal¿pagos Platform and better understand the petrogenesis of the erupted lavas. The earliest stage is represented by the deep-water lava flows, which over time construct a broad submarine platform. The deep-water lavas originate from the subcaldera plumbing system of the adjacent volcano. After construction of the platform, eruptions focus to a point source, building an island with rift zones extending away from the adjacent, buttressing volcanoes. Most rift zone magmas intrude laterally from the subcaldera magma chamber, although a few evolve by crystallization in the upper mantle and deep crust.

BACKGROUND DATA FILES

Abstract

Keywords
Mineralogy and Petrology, Intra-plate processes (1033, 8415), Volcanology, Intra-plate processes (1033, 3615), Volcanology, Subaqueous volcanism
Journal
Geochemistry Geophysics Geosystems
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit