EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Xu et al. 2006
Xu, S., Gao, B. and Saiers, J.E. (2006). Straining of colloidal particles in saturated porous media. Water Resources Research 42. doi: 10.1029/2006WR004948. issn: 0043-1397.

Straining may influence the mobility of colloid-sized particles within groundwater aquifers as well as within granular filters that are used in wastewater treatment. We conducted column transport experiments using latex microspheres as the colloids and quartz sand as the porous medium to investigate the response of colloid straining to changes in colloid diameter (dp) and sand grain diameter (dg). For these experiments the negatively charged microspheres were suspended in deionized water, and the quartz sand was thoroughly cleaned to minimize physicochemical deposition (attachment), which permitted the determination of straining in an unambiguous way. The measurements of strained (immobile phase) and effluent (aqueous phase) colloid concentrations could be described with a transport model that accounted for an exponential decline in straining rates with increasing concentrations of strained colloids. Best fit values of the model coefficient that quantified clean bed straining rates (ko) were negligibly small for dp/dg < 0.008 and, above this threshold, varied linearly with dp/dg. Our findings suggest that accurate inferences on the mobility of colloid-sized particles will require consideration of the effects of straining when dp/dg exceeds 0.008.

BACKGROUND DATA FILES

Abstract

Keywords
Hydrology, Groundwater hydrology, Hydrology, Groundwater quality, Hydrology, Chemistry of fresh water, Hydrology, Modeling
Journal
Water Resources Research
http://www.agu.org/wrr/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit