EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Dalsøren et al. 2007
Dalsøren, S.B., Endresen, Ø., Isaksen, I.S.A., Gravir, G. and Sørgård, E. (2007). Environmental impacts of the expected increase in sea transportation, with a particular focus on oil and gas scenarios for Norway and northwest Russia. Journal of Geophysical Research 112. doi: 10.1029/2005JD006927. issn: 0148-0227.

We have complemented existing global sea transportation emission inventories with new regional emission data sets and scenarios for ship traffic and coastal activity in 2015. Emission inventories for 2000 and 2015 are used in a global Chemical Transport Model (CTM) to quantify environmental atmospheric impacts with particular focus on the Arctic region. Although we assume that ship emissions continue to increase from 2000 to 2015, reductions are assumed for some chemical components and regions because of implementation of new regulations. Current ship traffic (2000) is estimated to contribute significantly to coastal pollution. Norwegian coastal ship traffic is responsible for more than 1/3 and 1/6 of the Norwegian NOx and SO2 emissions, respectively. For these short-lived components the impact of Norwegian coastal emissions is regionally important. For most components the international ship transportation outside coastal waters dominates the effects. Ship emissions increase wet deposition in Scandinavia with 30--50% for nitrate and 10--25% for sulfate. In general, coastal regions with prevailing onshore winds show substantial increases in deposition of acid components. Maximum surface increase in ozone is in excess of 10 ppbv. Column ozone increases are also significant. Assuming no changes in nonshipping emissions, scenarios for shipping activities in 2015 lead to more than 20% increase in NO2 from 2000 to 2015 in some coastal areas. Ozone increases are in general small. Wet deposition of acidic species increases up to 10% in areas where current critical loads are exceeded. Regulations limiting the sulfur content in the fuel in the North Sea and English Channel will be an efficient measure to reduce sulfate deposition in nearby coastal regions. The expected oil and gas transport by ships from Norway and northwest Russia, sea transport along the Northern Sea Route and new Norwegian coastal gas power plants will have a significant regional effect by increases of acid deposition in north Scandinavia and the Kola Peninsula. Augmented levels of particles in the Arctic are calculated, and thus the contribution from ship traffic to phenomena like Arctic haze could be increasing.

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Troposphere, composition and chemistry, Atmospheric Composition and Structure, Troposphere, constituent transport and chemistry, Atmospheric Composition and Structure, Pollution, urban and regional (0305, 0478, 4251), Global Change, Regional climate change, Policy Sciences, Legislation and regulations
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit