|
Detailed Reference Information |
Katoh, Y. and Omura, Y. (2007). Computer simulation of chorus wave generation in the Earth's inner magnetosphere. Geophysical Research Letters 34: doi: 10.1029/2006GL028594. issn: 0094-8276. |
|
A self-consistent particle simulation with a dipole magnetic field model is carried out, reproducing chorus emissions with rising tones successfully. We assume energetic electrons forming a highly anisotropic velocity distribution in the equatorial region. No initial wave is assumed except for electromagnetic thermal noise induced by the energetic electrons. In the early stage of the simulation, coherent whistler-mode waves are generated from the equator through an instability driven by the temperature anisotropy of the energetic electrons. During the propagation of the whistler-mode waves, we find formation of a narrowband emission with negative frequency gradient (NEWNFG) in the spatial distribution of the frequency spectrum in the simulation system. The trailing edge of NEWNFG is continuously created at increasing frequencies in the region close to the equator. Observed at a fixed point, the NEWNFG shows a frequency variation of a typical chorus emission. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Magnetospheric Physics, Numerical modeling, Magnetospheric Physics, Plasma waves and instabilities, Radio Science, Magnetospheric physics, Space Plasma Physics, Nonlinear phenomena (4400, 6944), Space Plasma Physics, Spacecraft/atmosphere interactions |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|