|
Detailed Reference Information |
Beer, C., Reichstein, M., Ciais, P., Farquhar, G.D. and Papale, D. (2007). Mean annual GPP of Europe derived from its water balance. Geophysical Research Letters 34: doi: 10.1029/2006GL029006. issn: 0094-8276. |
|
On local scale, the eddy covariance technique is suited to estimate gross primary production (GPP). Scaling up such observations to the regional and continental level, however, remains a challenge. Here, we show that there is a surprisingly robust stoichiometric relationship between vegetation CO2 and H2O fluxes, mediated by vapor pressure deficit (VPD), across many different forest vegetation types. This relationship is used to provide a data-driven estimate of Europe's GPP from its water balance. Namely, watershed-wide evapotranspiration (ET), as derived from precipitation (P) and river runoff (R), is multiplied by the ratio of GPP to ET as derived from eddy covariance measurements (water-use efficiency, WUE). In doing so, GPP of Europe is estimated to range between 3.9 and 5.8 PgC/a (median 5 PgC/a). Such GPP estimate is an important independent benchmark for large-scale ecosystem models and may be extended to global scale when relevant data becomes available. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Biogeosciences, Biogeochemical cycles, processes, and modeling (0412, 0793, 1615, 4805, 4912), Biogeosciences, Carbon cycling, Global Change, Biogeochemical cycles, processes, and modeling (0412, 0414, 0793, 4805, 4912) |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|