|
Detailed Reference Information |
Assouline, S., Selker, J.S. and Parlange, J.-Y. (2007). A simple accurate method to predict time of ponding under variable intensity rainfall. Water Resources Research 43. doi: 10.1029/2006WR005138. issn: 0043-1397. |
|
The prediction of the time to ponding following commencement of rainfall is fundamental to hydrologic prediction of flood, erosion, and infiltration. Most of the studies to date have focused on prediction of ponding resulting from simple rainfall patterns. This approach was suitable to rainfall reported as average values over intervals of up to a day but does not take advantage of knowledge of the complex patterns of actual rainfall now commonly recorded electronically. A straightforward approach to include the instantaneous rainfall record in the prediction of ponding time and excess rainfall using only the infiltration capacity curve is presented. This method is tested against a numerical solution of the Richards equation on the basis of an actual rainfall record. The predicted time to ponding showed mean error ≤7% for a broad range of soils, with and without surface sealing. In contrast, the standard predictions had average errors of 87%, and worst-case errors exceeding a factor of 10. In addition to errors intrinsic in the modeling framework itself, errors that arise from averaging actual rainfall records over reporting intervals were evaluated. Averaging actual rainfall records observed in Israel over periods of as little as 5 min significantly reduced predicted runoff (75% for the sealed sandy loam and 46% for the silty clay loam), while hourly averaging gave complete lack of prediction of ponding in some of the cases. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Hydrology, Infiltration, Hydrology, Precipitation, Hydrology, Computational hydrology, Hydrology, Estimation and forecasting |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|