GERM Reservoir Database
Development and Maintenance by the EarthRef.org Database Team

GERM Database Search Results        
Reservoir Z Element Value Median SD Low High N Unit Info Reference Source(s)
Primitive Mantle 47 Ag 4           ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: Ag/Na = 1.6 ¿ 1E-6 in MORB, Iherzolites, crust. Standard deviations are uncertain and greater than 50%. Palme & O'Neill 2004
Primitive Mantle 47 Ag 4           ppb Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004
Primitive Mantle 47 Ag 8           ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 13 Al 3.97           wt%ox Pyrolite model of the silicate Earth based on the least depleted ultramafic xenolith model according to Jagoutz et al. 1979. Compositions are given in weight percent per silicate oxide. McDonough & Sun 1995 Jagoutz et al. 1979
Primitive Mantle 13 Al 4.4           wt%ox Pyrolite model of the silicate Earth based on the MORB-harzburgite model according to Green et al. 1979. Compositions are given in weight percent per silicate oxide. McDonough & Sun 1995 Green et al. 1979
Primitive Mantle 13 Al 3.65           wt%ox Bulk silicate Earth model based on C1 Carbonaceous Chondrite values of major element oxides as taken from Taylor and McLennan 1985. McDonough & Sun 1995 Taylor & McLennan 1985
Primitive Mantle 13 Al 4.09           wt%ox Major oxides of the primitive mantle that are estimated to comprise the bulk of the Earth's mantle (measured in wt.%). Allegre et al. 1995
Primitive Mantle 13 Al 3.817           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Anderson 1983. McDonough & Frey 1989 Anderson 1983
Primitive Mantle 13 Al 4.75           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Palme and Nickel 1985. McDonough & Frey 1989 Palme & Nickel 1985
Primitive Mantle 13 Al 4.45           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from McDonough & Sun 1989 (in prep). McDonough & Frey 1989 McDonough & Sun 1989
Primitive Mantle 13 Al 4.45           wt%ox Estimates of major element oxide composition from the Primitive mantle as given by McDonough & Frey 1989 and Sun 1982. These values show that average Primitive mantle has roughly the same compositional values as Garnet/Spinel peridotites with some exceptions. McDonough 1990 McDonough & Frey 1989
Sun 1982
Primitive Mantle 13 Al 2.36           wt% Concentration of the Primitive mantle as given by McDonough & Frey 1989 and Sun 1982. Values given are placed next to average concentrations of Continental lithospheric mantle in an effort to calculate the proportional contribution to the Primitive mantle. This calculation assumes that the Continental lithospheric mantle is 1.45% the mass of the Primitive mantle. McDonough 1990 McDonough & Frey 1989
Sun 1982
Primitive Mantle 13 Al   4.45         wt%ox McDonough 1991 McDonough & Frey 1989
Sun 1982
Primitive Mantle 13 Al 3.2           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Ringwood 1979. McDonough & Frey 1989 Ringwood 1979
Primitive Mantle 13 Al 4.31           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Sun 1982. McDonough & Frey 1989 Sun 1982
Primitive Mantle 13 Al 4.2           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from W¿nke et al. 1984. McDonough & Frey 1989 Wanke et al. 1984
Primitive Mantle 13 Al 4.06           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Hart and Zindler 1987. McDonough & Frey 1989 Hart & Zindler 1986
Primitive Mantle 13 Al 3.64           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Taylor and McLennan 1985. McDonough & Frey 1989 Taylor & McLennan 1985
Primitive Mantle 13 Al 4.09           wt% Estimates of major element composition of the Earth Primitive Mantle from Allegre et al. 1995. Palme & O'Neill 2004 Allegre et al. 1995
Primitive Mantle 13 Al 4.44           wt% Primitive Upper Mantle (PUM) major element compositions as measured by McDonough & Sun 1995.  All mineral compositions normalized to 100%. Workman & Hart 2005 McDonough & Sun 1995
Primitive Mantle 13 Al 18670           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Primitive Mantle 13 Al 4.45           wt%ox Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. McDonough & Sun 1995
Primitive Mantle 13 Al 23800   1904       ppm Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: Major element, RLE Palme & O'Neill 2004
Primitive Mantle 13 Al 4.06           wt%ox Major oxide elemental abundances in weight percent from Earth's Primitive Mantle as were first given by Hart and Zindler 1986.  Hofmann 1988 Hart & Zindler 1986
Primitive Mantle 13 Al 4.44           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 McDonough & Sun 1995
Primitive Mantle 13 Al 4.75           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Palme & Nickel 1985
Primitive Mantle 13 Al 3.97           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Jagoutz et al. 1979
Primitive Mantle 13 Al 2.35   0.235       wt% Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 13 Al 4.49           wt% Primitive mantle model of upper mantle composition from Palme and O'Neill Treatise on Geochemistry Chapter 2.01. Walter 2004 Palme & O'Neill 2004
Primitive Mantle 13 Al 2.37           wt% Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004
Primitive Mantle 13 Al 4.49   0.37       wt% Major element composition of the Earth Primitive Mantle, measurements by Palme & O'Neill 2004. Palme & O'Neill 2004
Primitive Mantle 13 Al 4.06           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Hart & Zindler 1986
Primitive Mantle 13 Al 4.09           wt% PRIMA (PRImitive MAntle) model of fertile upper mantle composition given by Allegre et al. 1995. Walter 2004 Allegre et al. 1995
Primitive Mantle 13 Al 3.3           wt% Estimates of major element composition of the Earth Primitive Mantle from Ringwood 1979. Palme & O'Neill 2004 Ringwood 1979
Primitive Mantle 13 Al 4           wt% Estimates of major element composition of the Earth Primitive Mantle from Jagoutz et al. 1979. Palme & O'Neill 2004 Jagoutz et al. 1979
Primitive Mantle 13 Al 4.1           wt% Estimates of major element composition of the Earth Primitive Mantle from Wanke et al. 1984. Palme & O'Neill 2004 Wanke et al. 1984
Primitive Mantle 13 Al 4.8           wt% Estimates of major element composition of the Earth Primitive Mantle from Palme & Nickel 1985. Palme & O'Neill 2004 Palme & Nickel 1985
Primitive Mantle 13 Al 4.06           wt% Estimates of major element composition of the Earth Primitive Mantle from Hart & Zindler 1986. Palme & O'Neill 2004 Hart & Zindler 1986
Primitive Mantle 13 Al 4.4           wt% Estimates of major element composition of the Earth Primitive Mantle from McDonough & Sun 1995. Palme & O'Neill 2004 McDonough & Sun 1995
Primitive Mantle   Al/Si 0.1             Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Jagoutz et al. 1979
Primitive Mantle   Al/Si 0.12             Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Palme & Nickel 1985
Primitive Mantle   Al/Si 0.1             Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Hart & Zindler 1986
Primitive Mantle   Al/Si 0.11             Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 McDonough & Sun 1995
Primitive Mantle 33 As 66           ppb Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004 Sims et al. 1990
Primitive Mantle 33 As 0.05           ppm Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 33 As 0.066   0.0462       ppm Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: As/Ce = 0.037 ¿ 0.025 Palme & O'Neill 2004 Sims et al. 1990
Primitive Mantle 79 Au 0.88   0.0968       ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: HSE, Ir/Au = 3.63 ¿ 0.13, H-chondrite Palme & O'Neill 2004 Kallemeyn et al. 1989
Primitive Mantle 79 Au 1           ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 79 Au 0.88           ppb Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004 Kallemeyn et al. 1989
Primitive Mantle 5 B 0.3           ppm Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 5 B 0.26           ppm Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004 Chaussidon & Jambon 1994
Primitive Mantle 5 B 0.26   0.104       ppm Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: B/K =  (1.0 ¿ 0.3) 1E-3 Palme & O'Neill 2004 Chaussidon & Jambon 1994
Primitive Mantle 56 Ba 6750   1012.5       ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: RLE Palme & O'Neill 2004
Primitive Mantle 56 Ba 6.75           ppm Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004
Primitive Mantle 56 Ba 7.1           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Sun & Nesbitt 1977
Primitive Mantle 56 Ba 7.3           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Smith 1977
Primitive Mantle 56 Ba 8.4           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Ringwood & Kesson 1977
Primitive Mantle 56 Ba 7.7           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Ganapathy & Anders 1974
Primitive Mantle 56 Ba 5.5           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Shaw 1972
Primitive Mantle 56 Ba 7.9           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Larimer 1971
Primitive Mantle 56 Ba 6.049           ppm Trace element abundances in the Earth's Primitive mantle given in ppm as was first found by Hart and Zindler 1986. The major element factor of 2.51 was used to obtain the mantle values of the refractory trace elements from the abundances of C1 Carbonaceous chondrites. Hofmann 1988 Hart & Zindler 1986
Primitive Mantle 56 Ba 2.2           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone.  Hofmann & White 1983 Palme et al. 1981
Primitive Mantle 56 Ba 6.9           ppm Abundances for K, Rb, Cs and Ba according to analysis performed by Hofmann and White 1983.  Abundance values found to be in agreement with published values for these same elements, aside from Cs, which was far from previously published data. Value taken from Jagoutz et al. 1979 which states that this value is based on terrestrial refractory element ratios are chondritic. Hofmann & White 1983
Primitive Mantle 56 Ba 7.6           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Jacobsen & Wasserburg 1979
Primitive Mantle 56 Ba 6.9           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Jagoutz et al. 1979
Primitive Mantle 56 Ba 6.9           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Jagoutz et al. 1979
Primitive Mantle 56 Ba 6.05           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Hofmann 1988
Primitive Mantle 56 Ba 17.9           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Primitive Mantle 56 Ba 6600   660       ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle   Ba/Rb 10.4             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Sun & Nesbitt 1977
Primitive Mantle   Ba/Rb 11.3             Abundances for K, Rb, Cs and Ba according to analysis performed by Hofmann and White 1983.  Abundance values found to be in agreement with published values for these same elements, aside from Cs, which was far from previously published data.  Hofmann & White 1983
Primitive Mantle   Ba/Rb 9.9             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Ringwood & Kesson 1977
Primitive Mantle   Ba/Rb 12.6             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Larimer 1971
Primitive Mantle   Ba/Rb 10             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Smith 1977
Primitive Mantle   Ba/Rb 11.3             Element ratios from the Primitive Mantle as given by Hofmann 1988. Gao et al. 1998 Hofmann 1988
Primitive Mantle   Ba/Rb 9.3             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Shaw 1972
Primitive Mantle   Ba/Rb 8.8             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Ganapathy & Anders 1974
Primitive Mantle   Ba/Rb 12.1             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Jacobsen & Wasserburg 1979
Primitive Mantle   Ba/Rb 8.5             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Jagoutz et al. 1979
Primitive Mantle   Ba/Th 74             Element ratios from the Primitive Mantle as given by Hofmann 1988. Gao et al. 1998 Hofmann 1988
Primitive Mantle 4 Be 0.07   0.007       ppm Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: RLE Palme & O'Neill 2004
Primitive Mantle 4 Be 0.07           ppm Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004
Primitive Mantle 4 Be 0.068   0.0136       ppm Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 83 Bi 2.5   0.75       ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 83 Bi 5           ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: Bi/La = 8E-3 in crust. Standard deviations are uncertain and greater than 50%. Palme & O'Neill 2004
Primitive Mantle 35 Br 0.075   0.0375       ppm Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: Cl/Br = 400 ¿ 50 Palme & O'Neill 2004 Jambon et al. 1995
Primitive Mantle 35 Br 0.05           ppm Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 6 C 120           ppm Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 6 C 100           ppm Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: Mass balance. Standard deviations are uncertain and greater than 50%. Palme & O'Neill 2004 Zhang & Zindler 1993
Primitive Mantle 20 Ca 3.21           wt%ox Major oxide elemental abundances in weight percent from Earth's Primitive Mantle as were first given by Hart and Zindler 1986.  Hofmann 1988 Hart & Zindler 1986
Primitive Mantle 20 Ca 3.21           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Hart and Zindler 1987. McDonough & Frey 1989 Hart & Zindler 1986
Primitive Mantle 20 Ca 3.54           wt% Primitive Upper Mantle (PUM) major element compositions as measured by McDonough & Sun 1995. All mineral compositions normalized to 100%. Workman & Hart 2005 McDonough & Sun 1995
Primitive Mantle 20 Ca 3.54           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from W¿nke et al. 1984. McDonough & Frey 1989 Wanke et al. 1984
Primitive Mantle 20 Ca 3.5           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Sun 1982. McDonough & Frey 1989 Sun 1982
Primitive Mantle 20 Ca 3.1           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Ringwood 1979. McDonough & Frey 1989 Ringwood 1979
Primitive Mantle 20 Ca   3.6         wt%ox McDonough 1991 McDonough & Frey 1989
Sun 1982
Primitive Mantle 20 Ca 3.65   0.31       wt% Major element composition of the Earth Primitive Mantle, measurements by Palme & O'Neill 2004. Palme & O'Neill 2004
Primitive Mantle 20 Ca 3.21           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Hart & Zindler 1986
Primitive Mantle 20 Ca 2.61           wt% Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004
Primitive Mantle 20 Ca 3.1           wt% Estimates of major element composition of the Earth Primitive Mantle from Ringwood 1979. Palme & O'Neill 2004 Ringwood 1979
Primitive Mantle 20 Ca 3.5           wt% Estimates of major element composition of the Earth Primitive Mantle from Jagoutz et al. 1979. Palme & O'Neill 2004 Jagoutz et al. 1979
Primitive Mantle 20 Ca 3.5           wt% Estimates of major element composition of the Earth Primitive Mantle from Wanke et al. 1984. Palme & O'Neill 2004 Wanke et al. 1984
Primitive Mantle 20 Ca 4.4           wt% Estimates of major element composition of the Earth Primitive Mantle from Palme & Nickel 1985. Palme & O'Neill 2004 Palme & Nickel 1985
Primitive Mantle 20 Ca 3.27           wt% Estimates of major element composition of the Earth Primitive Mantle from Hart & Zindler 1986. Palme & O'Neill 2004 Hart & Zindler 1986
Primitive Mantle 20 Ca 3.5           wt% Estimates of major element composition of the Earth Primitive Mantle from McDonough & Sun 1995. Palme & O'Neill 2004 McDonough & Sun 1995
Primitive Mantle 20 Ca 3.5           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Jagoutz et al. 1979
Primitive Mantle 20 Ca 4.36           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Palme & Nickel 1985
Primitive Mantle 20 Ca 3.54           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 McDonough & Sun 1995
Primitive Mantle 20 Ca 3.23           wt% Estimates of major element composition of the Earth Primitive Mantle from Allegre et al. 1995. Palme & O'Neill 2004 Allegre et al. 1995
Primitive Mantle 20 Ca 3.23           wt% PRIMA (PRImitive MAntle) model of fertile upper mantle composition given by Allegre et al. 1995. Walter 2004 Allegre et al. 1995
Primitive Mantle 20 Ca 3.7           wt% Primitive mantle model of upper mantle composition from Palme and O'Neill Treatise on Geochemistry Chapter 2.01. Walter 2004 Palme & O'Neill 2004
Primitive Mantle 20 Ca 26100   2088       ppm Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: Major element, RLE Palme & O'Neill 2004
Primitive Mantle 20 Ca 2.53   0.253       wt% Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 20 Ca 3.55           wt%ox Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. McDonough & Sun 1995
Primitive Mantle 20 Ca 23110           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Primitive Mantle 20 Ca 3.5           wt%ox Pyrolite model of the silicate Earth based on the least depleted ultramafic xenolith model according to Jagoutz et al. 1979. Compositions are given in weight percent per silicate oxide. McDonough & Sun 1995 Jagoutz et al. 1979
Primitive Mantle 20 Ca 3.4           wt%ox Pyrolite model of the silicate Earth based on the MORB-harzburgite model according to Green et al. 1979. Compositions are given in weight percent per silicate oxide. McDonough & Sun 1995 Green et al. 1979
Primitive Mantle 20 Ca 2.9           wt%ox Bulk silicate Earth model based on C1 Carbonaceous Chondrite values of major element oxides as taken from Taylor and McLennan 1985. McDonough & Sun 1995 Taylor & McLennan 1985
Primitive Mantle 20 Ca 3.232           wt%ox Major oxides of the primitive mantle that are estimated to comprise the bulk of the Earth's mantle (measured in wt.%). Allegre et al. 1995
Primitive Mantle 20 Ca 2.89           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Taylor and McLennan 1985. McDonough & Frey 1989 Taylor & McLennan 1985
Primitive Mantle 20 Ca 3.078           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Anderson 1983. McDonough & Frey 1989 Anderson 1983
Primitive Mantle 20 Ca 4.36           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Palme and Nickel 1985. McDonough & Frey 1989 Palme & Nickel 1985
Primitive Mantle 20 Ca 3.6           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from McDonough & Sun 1989 (in prep). McDonough & Frey 1989 McDonough & Sun 1989
Primitive Mantle 20 Ca 3.6           wt%ox Estimates of major element oxide composition from the Primitive mantle as given by McDonough & Frey 1989 and Sun 1982. These values show that average Primitive mantle has roughly the same compositional values as Garnet/Spinel peridotites with some exceptions. McDonough 1990 McDonough & Frey 1989
Sun 1982
Primitive Mantle   Ca/Al   1.09           McDonough 1991 McDonough & Frey 1989
Sun 1982
Primitive Mantle   Ca/Al 1.07   0.001         Primitive mantle ratios (in wt. %) of lithophile elements used to attempt to estimate the composition of the Earth. Values are obtained by using the same approach as were utilized by a number of previous references. However, in this study the difference is that siderophile elements (or all elements suspected of entering the Earth's core) are omitted, therein retaining only the major lithophile elements. The idea behind the omission of the siderophile elements in this study is that the ratios of the elements which do not enter the core (lithophile) are the same in the bluk Earth as in the mantle. Allegre et al. 1995
Primitive Mantle   CaO/Al2O3 0.79             PRIMA (PRImitive MAntle) model of fertile upper mantle composition given by Allegre et al. 1995. Walter 2004 Allegre et al. 1995
Primitive Mantle   CaO/Al2O3 0.82             Primitive mantle model of upper mantle composition from Palme and O'Neill Treatise on Geochemistry Chapter 2.01. Walter 2004 Palme & O'Neill 2004
Primitive Mantle   CaO/Al2O3 0.8             Primitive Upper Mantle (PUM) major element compositions as measured by McDonough & Sun 1995. Workman & Hart 2005 McDonough & Sun 1995
Primitive Mantle 48 Cd 64           ppb Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004
Primitive Mantle 48 Cd 64           ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: Cd/Zn = 1.2 ¿ 0.5E-3. Standard deviations are uncertain and greater than 50%. Palme & O'Neill 2004
Primitive Mantle 48 Cd 40   12       ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 58 Ce 1.6011           ppm Trace element abundances in the Earth's Primitive mantle given in ppm as was first found by Hart and Zindler 1986. The major element factor of 2.51 was used to obtain the mantle values of the refractory trace elements from the abundances of C1 Carbonaceous chondrites. Hofmann 1988 Hart & Zindler 1986
Primitive Mantle 58 Ce 1785           ppb Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004
Primitive Mantle 58 Ce 1786   178.6       ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: RLE Palme & O'Neill 2004
Primitive Mantle 58 Ce 1675   168       ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 58 Ce 1.4           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Primitive Mantle 58 Ce 0.93           ppm Primitive mantle 94% Balmuccia and 6% MORB. Primitive mantle concentrations derived from correlations of Li, Na, Sc, Ti, V, Gal, Y, Zr, HREE and Hf with Al2O3 in the peridotites at 4%. Wedepohl & Hartmann 1994
Primitive Mantle 58 Ce 1.56           ppm Model compositions for Earth's Primitive mantle as based on analysis from Hart and Zindler 1987. McDonough & Frey 1989 Hart & Zindler 1986
Primitive Mantle 58 Ce 1.436           ppm Model compositions for Earth's Primitive mantle as based on analysis from Taylor and McLennan 1985. McDonough & Frey 1989 Taylor & McLennan 1985
Primitive Mantle 58 Ce 1.4           ppm Model compositions for Earth's Primitive mantle as based on analysis from Anderson 1983. McDonough & Frey 1989 Anderson 1983
Primitive Mantle 58 Ce 1.8           ppm Model compositions for Earth's Primitive mantle as based on analysis from McDonough & Sun 1989 (in prep). McDonough & Frey 1989 McDonough & Sun 1989
Primitive Mantle 58 Ce   1.83         ppm McDonough 1991 McDonough & Frey 1989
Sun 1982
Primitive Mantle 58 Ce 1.86           ppm Model compositions for Earth's Primitive mantle as based on analysis from Sun 1982. McDonough & Frey 1989 Sun 1982
Primitive Mantle 58 Ce 1.73           ppm Model compositions for Earth's Primitive mantle as based on analysis from W¿nke et al. 1984. McDonough & Frey 1989 Wanke et al. 1984
Primitive Mantle 58 Ce 1.6           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Hofmann 1988
Primitive Mantle 17 Cl 17           ppm Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 17 Cl 30   12       ppm Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: Mass balance Palme & O'Neill 2004 Jambon et al. 1995
Primitive Mantle 27 Co 104           ppm Trace element abundances in the Earth's Primitive mantle given in ppm as was first found by Hart and Zindler 1986. The major element factor of 2.51 was used to obtain the mantle values of the refractory trace elements from the abundances of C1 Carbonaceous chondrites. Hofmann 1988 Hart & Zindler 1986
Primitive Mantle 27 Co 0.013           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Hart & Zindler 1986
Primitive Mantle 27 Co 102           ppm Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004 O'Neill & Palme 1998
Primitive Mantle 27 Co 0.013           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Jagoutz et al. 1979
Primitive Mantle 27 Co   105         ppm McDonough 1991 McDonough & Frey 1989
Sun 1982
Primitive Mantle 27 Co 102   5.1       ppm Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: versus MgO Palme & O'Neill 2004 O'Neill & Palme 1998
Primitive Mantle 27 Co 105   10.5       ppm Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 27 Co 104           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Primitive Mantle 27 Co 104           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Hofmann 1988
Primitive Mantle 27 Co 0.012           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Palme & Nickel 1985
Primitive Mantle 24 Cr 0.38           wt% Primitive Upper Mantle (PUM) major element compositions as measured by McDonough & Sun 1995. All mineral compositions normalized to 100%. Workman & Hart 2005 McDonough & Sun 1995
Primitive Mantle 24 Cr 0.44           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Taylor and McLennan 1985. McDonough & Frey 1989 Taylor & McLennan 1985
Primitive Mantle 24 Cr 2520           ppm Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004 O'Neill & Palme 1998
Primitive Mantle 24 Cr 0.46           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Jagoutz et al. 1979
Primitive Mantle 24 Cr 0.43           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Palme & Nickel 1985
Primitive Mantle 24 Cr 0.38           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 McDonough & Sun 1995
Primitive Mantle 24 Cr 0.38           wt% PRIMA (PRImitive MAntle) model of fertile upper mantle composition given by Allegre et al. 1995. Walter 2004 Allegre et al. 1995
Primitive Mantle 24 Cr 2520   252       ppm Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: versus MgO Palme & O'Neill 2004 O'Neill & Palme 1998
Primitive Mantle 24 Cr 0.37           wt% Primitive mantle model of upper mantle composition from Palme and O'Neill Treatise on Geochemistry Chapter 2.01. Walter 2004 Palme & O'Neill 2004
Primitive Mantle 24 Cr 2625   393.75       ppm Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 24 Cr 0.384           wt%ox Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. McDonough & Sun 1995
Primitive Mantle 24 Cr 0.47           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Hart & Zindler 1986
Primitive Mantle 24 Cr 0.468           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Hart and Zindler 1987. McDonough & Frey 1989 Hart & Zindler 1986
Primitive Mantle 24 Cr 2500           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Primitive Mantle 24 Cr 3465           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Jagoutz et al. 1979
Primitive Mantle 24 Cr 0.46           wt%ox Pyrolite model of the silicate Earth based on the least depleted ultramafic xenolith model according to Jagoutz et al. 1979. Compositions are given in weight percent per silicate oxide. McDonough & Sun 1995 Jagoutz et al. 1979
Primitive Mantle 24 Cr 0.45           wt%ox Pyrolite model of the silicate Earth based on the MORB-harzburgite model according to Green et al. 1979. Compositions are given in weight percent per silicate oxide. McDonough & Sun 1995 Green et al. 1979
Primitive Mantle 24 Cr 0.44           wt%ox Bulk silicate Earth model based on C1 Carbonaceous Chondrite values of major element oxides as taken from Taylor and McLennan 1985. McDonough & Sun 1995 Taylor & McLennan 1985
Primitive Mantle 24 Cr 0.38           wt%ox Minor oxides of the primitive mantle (in wt.%) that comprise the remnant portions of the Earth's mantle. In this particular study the sum of the minor oxides is taken and normalized to 100% in an effort to obtain the absolute values of each element, which are then used for comparison to prior studies conducted of the Earth's mantle. Allegre et al. 1995
Primitive Mantle 24 Cr 0.342           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Anderson 1983. McDonough & Frey 1989 Anderson 1983
Primitive Mantle 24 Cr 0.43           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Palme and Nickel 1985. McDonough & Frey 1989 Palme & Nickel 1985
Primitive Mantle 24 Cr 0.38           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from McDonough & Sun 1989 (in prep). McDonough & Frey 1989 McDonough & Sun 1989
Primitive Mantle 24 Cr 0.43           wt%ox Estimates of major element oxide composition from the Primitive mantle as given by McDonough & Frey 1989 and Sun 1982. These values show that average Primitive mantle has roughly the same compositional values as Garnet/Spinel peridotites with some exceptions. McDonough 1990 McDonough & Frey 1989
Sun 1982
Primitive Mantle 24 Cr   0.38         wt%ox McDonough 1991 McDonough & Frey 1989
Sun 1982
Primitive Mantle 24 Cr 0.4           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Ringwood 1979. McDonough & Frey 1989 Ringwood 1979
Primitive Mantle 24 Cr 0.44           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Sun 1982. McDonough & Frey 1989 Sun 1982
Primitive Mantle 24 Cr 0.44           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from W¿nke et al. 1984. McDonough & Frey 1989 Wanke et al. 1984
Primitive Mantle   Cr/Mn 2.5             Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts.and basalts. McDonough & Sun 1995
Primitive Mantle   Cr/V 32             Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts.and basalts. McDonough & Sun 1995
Primitive Mantle 55 Cs 0.0268           ppm Trace element abundances in the Earth's Primitive mantle given in ppm as was first found by Hart and Zindler 1986. The major element factor of 2.51 was used to obtain the mantle values of the refractory trace elements from the abundances of C1 Carbonaceous chondrites. Hofmann 1988 Hart & Zindler 1986
Primitive Mantle 55 Cs 13           ppb Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Larimer 1971
Primitive Mantle 55 Cs 88           ppb Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Ganapathy & Anders 1974
Primitive Mantle 55 Cs 31           ppb Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Ringwood & Kesson 1977
Primitive Mantle 55 Cs 13           ppb Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Smith 1977
Primitive Mantle 55 Cs 24           ppb Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Sun & Nesbitt 1977
Primitive Mantle 55 Cs 0.19           ppb Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone.  Hofmann & White 1983 Palme et al. 1981
Primitive Mantle 55 Cs 18   9       ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: Cs/Ba = 1.1E-3 in mantle, 3.6E-3 in crust Palme & O'Neill 2004 McDonough et al. 1992
Primitive Mantle 55 Cs 21   8.4       ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 55 Cs 0.0268           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Hofmann 1988
Primitive Mantle 55 Cs       8 17   ppb Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Sun 1982
Primitive Mantle 55 Cs 7.7           ppb Abundances for K, Rb, Cs and Ba according to analysis performed by Hofmann and White 1983.  Abundance values found to be in agreement with published values for these same elements, aside from Cs, which was far from previously published data. Hofmann & White 1983
Primitive Mantle 55 Cs 18           ppb Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004 McDonough et al. 1992
Primitive Mantle 29 Cu 28           ppm Trace element abundances in the Earth's Primitive mantle given in ppm as was first found by Hart and Zindler 1986. The major element factor of 2.51 was used to obtain the mantle values of the refractory trace elements from the abundances of C1 Carbonaceous chondrites. Hofmann 1988 Hart & Zindler 1986
Primitive Mantle 29 Cu 20           ppm Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004 O'Neill 1991
Primitive Mantle 29 Cu 6.4           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Jagoutz et al. 1979
Primitive Mantle 29 Cu 30   4.5       ppm Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 29 Cu 35           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Primitive Mantle 29 Cu 20   10       ppm Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: Palme & O'Neill 2004 O'Neill 1991
Primitive Mantle 66 Dy 674   67.4       ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 66 Dy 0.56           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Primitive Mantle 66 Dy 0.57           ppm Primitive mantle 94% Balmuccia and 6% MORB. Primitive mantle concentrations derived from correlations of Li, Na, Sc, Ti, V, Gal, Y, Zr, HREE and Hf with Al2O3 in the peridotites at 4%. Wedepohl & Hartmann 1994
Primitive Mantle 66 Dy 0.638           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Hofmann 1988
Primitive Mantle 66 Dy 0.572           ppm Model compositions for Earth's Primitive mantle as based on analysis from Taylor and McLennan 1985. McDonough & Frey 1989 Taylor & McLennan 1985
Primitive Mantle 66 Dy 711   71.1       ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: RLE Palme & O'Neill 2004
Primitive Mantle 66 Dy 0.746           ppm Model compositions for Earth's Primitive mantle as based on analysis from Sun 1982. McDonough & Frey 1989 Sun 1982
Primitive Mantle 66 Dy 0.766           ppm Model compositions for Earth's Primitive mantle as based on analysis from W¿nke et al. 1984. McDonough & Frey 1989 Wanke et al. 1984
Primitive Mantle 66 Dy 0.625           ppm Model compositions for Earth's Primitive mantle as based on analysis from Hart and Zindler 1987. McDonough & Frey 1989 Hart & Zindler 1986
Primitive Mantle 66 Dy 0.6378           ppm Trace element abundances in the Earth's Primitive mantle given in ppm as was first found by Hart and Zindler 1986. The major element factor of 2.51 was used to obtain the mantle values of the refractory trace elements from the abundances of C1 Carbonaceous chondrites. Hofmann 1988 Hart & Zindler 1986
Primitive Mantle 66 Dy 711           ppb Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004
Primitive Mantle 66 Dy 0.721           ppm Model compositions for Earth's Primitive mantle as based on analysis from McDonough & Sun 1989 (in prep). McDonough & Frey 1989 McDonough & Sun 1989
Primitive Mantle 68 Er 0.49           ppm Model compositions for Earth's Primitive mantle as based on analysis from Sun 1982. McDonough & Frey 1989 Sun 1982
Primitive Mantle 68 Er 465           ppb Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004
Primitive Mantle 68 Er 0.374           ppm Model compositions for Earth's Primitive mantle as based on analysis from Taylor and McLennan 1985. McDonough & Frey 1989 Taylor & McLennan 1985
Primitive Mantle 68 Er 0.4167           ppm Trace element abundances in the Earth's Primitive mantle given in ppm as was first found by Hart and Zindler 1986. The major element factor of 2.51 was used to obtain the mantle values of the refractory trace elements from the abundances of C1 Carbonaceous chondrites. Hofmann 1988 Hart & Zindler 1986
Primitive Mantle 68 Er 0.473           ppm Model compositions for Earth's Primitive mantle as based on analysis from McDonough & Sun 1989 (in prep). McDonough & Frey 1989 McDonough & Sun 1989
Primitive Mantle 68 Er 0.41           ppm Model compositions for Earth's Primitive mantle as based on analysis from Hart and Zindler 1987. McDonough & Frey 1989 Hart & Zindler 1986
Primitive Mantle 68 Er 438   43.8       ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 68 Er 0.46           ppm Model compositions for Earth's Primitive mantle as based on analysis from W¿nke et al. 1984. McDonough & Frey 1989 Wanke et al. 1984
Primitive Mantle 68 Er 465   46.5       ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: RLE Palme & O'Neill 2004
Primitive Mantle 63 Eu 0.171           ppm Model compositions for Earth's Primitive mantle as based on analysis from Sun 1982. McDonough & Frey 1989 Sun 1982
Primitive Mantle 63 Eu 0.188           ppm Model compositions for Earth's Primitive mantle as based on analysis from W¿nke et al. 1984. McDonough & Frey 1989 Wanke et al. 1984
Primitive Mantle 63 Eu 0.143           ppm Model compositions for Earth's Primitive mantle as based on analysis from Hart and Zindler 1987. McDonough & Frey 1989 Hart & Zindler 1986
Primitive Mantle 63 Eu 0.1456           ppm Trace element abundances in the Earth's Primitive mantle given in ppm as was first found by Hart and Zindler 1986. The major element factor of 2.51 was used to obtain the mantle values of the refractory trace elements from the abundances of C1 Carbonaceous chondrites. Hofmann 1988 Hart & Zindler 1986
Primitive Mantle 63 Eu 162           ppb Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004
Primitive Mantle 63 Eu 162   16.2       ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: RLE Palme & O'Neill 2004
Primitive Mantle 63 Eu 0.168           ppm Concentration of the Primitive mantle as given by McDonough & Frey 1989 and Sun 1982. Values given are placed next to average concentrations of Continental lithospheric mantle in an effort to calculate the proportional contribution to the Primitive mantle. This calculation assumes that the Continental lithospheric mantle is 1.45% the mass of the Primitive mantle. McDonough 1990 McDonough & Frey 1989
Sun 1982
Primitive Mantle 63 Eu 0.165           ppm Model compositions for Earth's Primitive mantle as based on analysis from McDonough & Sun 1989 (in prep). McDonough & Frey 1989 McDonough & Sun 1989
Primitive Mantle 63 Eu 0.13           ppm Model compositions for Earth's Primitive mantle as based on analysis from Anderson 1983. McDonough & Frey 1989 Anderson 1983
Primitive Mantle 63 Eu 0.131           ppm Model compositions for Earth's Primitive mantle as based on analysis from Taylor and McLennan 1985. McDonough & Frey 1989 Taylor & McLennan 1985
Primitive Mantle 63 Eu 0.146           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Hofmann 1988
Primitive Mantle 63 Eu 0.17           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Jagoutz et al. 1979
Primitive Mantle 63 Eu 0.14           ppm Primitive mantle 94% Balmuccia and 6% MORB. Primitive mantle concentrations derived from correlations of Li, Na, Sc, Ti, V, Gal, Y, Zr, HREE and Hf with Al2O3 in the peridotites at 4%. Wedepohl & Hartmann 1994
Primitive Mantle 63 Eu 0.13           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Primitive Mantle 63 Eu 154   15.4       ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 63 Eu   0.168         ppm McDonough 1991 McDonough & Frey 1989
Sun 1982
Primitive Mantle 9 F 25           ppm Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 9 F 13.5           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Jagoutz et al. 1979
Primitive Mantle 9 F 19           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Primitive Mantle 9 F 25   10       ppm Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: F/K = 0.09 ¿ 0.03, F/P = 0.3 ¿ 0.1 Palme & O'Neill 2004
Primitive Mantle 26 Fe 6.26   0.626       wt% Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 26 Fe 8.1           wt% Primitive mantle model of upper mantle composition from Palme and O'Neill Treatise on Geochemistry Chapter 2.01. Walter 2004 Palme & O'Neill 2004
Primitive Mantle 26 Fe 8.05           wt%ox Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. McDonough & Sun 1995
Primitive Mantle 26 Fe 6.3   0.063       wt% Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: Major element Palme & O'Neill 2004 O'Neill & Palme 1998
Primitive Mantle 26 Fe 7.49           wt% PRIMA (PRImitive MAntle) model of fertile upper mantle composition given by Allegre et al. 1995. Walter 2004 Allegre et al. 1995
Primitive Mantle 26 Fe 7.49           wt% Estimates of major element composition of the Earth Primitive Mantle from Allegre et al. 1995. Palme & O'Neill 2004 Allegre et al. 1995
Primitive Mantle 26 Fe 8.05           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 McDonough & Sun 1995
Primitive Mantle 26 Fe 7.7           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Palme & Nickel 1985
Primitive Mantle 26 Fe 7.82           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Jagoutz et al. 1979
Primitive Mantle 26 Fe 8.1           wt% Estimates of major element composition of the Earth Primitive Mantle from McDonough & Sun 1995. Palme & O'Neill 2004 McDonough & Sun 1995
Primitive Mantle 26 Fe             wt% Estimates of major element composition of the Earth Primitive Mantle from Hart & Zindler 1986. Palme & O'Neill 2004 Hart & Zindler 1986
Primitive Mantle 26 Fe 7.7           wt% Estimates of major element composition of the Earth Primitive Mantle from Palme & Nickel 1985. Palme & O'Neill 2004 Palme & Nickel 1985
Primitive Mantle 26 Fe 64150           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Primitive Mantle 26 Fe 7.82           wt%ox Pyrolite model of the silicate Earth based on the least depleted ultramafic xenolith model according to Jagoutz et al. 1979. Compositions are given in weight percent per silicate oxide. McDonough & Sun 1995 Jagoutz et al. 1979
Primitive Mantle 26 Fe 7.6           wt%ox Pyrolite model of the silicate Earth based on the MORB-harzburgite model according to Green et al. 1979. Compositions are given in weight percent per silicate oxide. McDonough & Sun 1995 Green et al. 1979
Primitive Mantle 26 Fe 8           wt%ox Bulk silicate Earth model based on C1 Carbonaceous Chondrite values of major element oxides as taken from Taylor and McLennan 1985. McDonough & Sun 1995 Taylor & McLennan 1985
Primitive Mantle 26 Fe 7.485           wt%ox Major oxides of the primitive mantle that are estimated to comprise the bulk of the Earth's mantle (measured in wt.%). Allegre et al. 1995
Primitive Mantle 26 Fe 7.86           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Anderson 1983. McDonough & Frey 1989 Anderson 1983
Primitive Mantle 26 Fe 7.7           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Palme and Nickel 1985. McDonough & Frey 1989 Palme & Nickel 1985
Primitive Mantle 26 Fe 8           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from McDonough & Sun 1989 (in prep). McDonough & Frey 1989 McDonough & Sun 1989
Primitive Mantle 26 Fe 8.4           wt%ox Estimates of major element oxide composition from the Primitive mantle as given by McDonough & Frey 1989 and Sun 1982. These values show that average Primitive mantle has roughly the same compositional values as Garnet/Spinel peridotites with some exceptions. McDonough 1990 McDonough & Frey 1989
Sun 1982
Primitive Mantle 26 Fe   8.4         wt%ox McDonough 1991 McDonough & Frey 1989
Sun 1982
Primitive Mantle 26 Fe 8           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Ringwood 1979. McDonough & Frey 1989 Ringwood 1979
Primitive Mantle 26 Fe 8.17           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Sun 1982. McDonough & Frey 1989 Sun 1982
Primitive Mantle 26 Fe 7.58           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from W¿nke et al. 1984. McDonough & Frey 1989 Wanke et al. 1984
Primitive Mantle 26 Fe 7.54           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Hart and Zindler 1987. McDonough & Frey 1989 Hart & Zindler 1986
Primitive Mantle 26 Fe 8           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Taylor and McLennan 1985. McDonough & Frey 1989 Taylor & McLennan 1985
Primitive Mantle 26 Fe 7.54           wt%ox Major oxide elemental abundances in weight percent from Earth's Primitive Mantle as were first given by Hart and Zindler 1986.  Hofmann 1988 Hart & Zindler 1986
Primitive Mantle 26 Fe 8.03           wt% Primitive Upper Mantle (PUM) major element compositions as measured by McDonough & Sun 1995. Total Fe as FeO. All mineral compositions normalized to 100%. Workman & Hart 2005 McDonough & Sun 1995
Primitive Mantle 26 Fe 8.1   0.05       wt% Major element composition of the Earth Primitive Mantle, measurements by Palme & O'Neill 2004. Palme & O'Neill 2004
Primitive Mantle 26 Fe 7.54           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Hart & Zindler 1986
Primitive Mantle 26 Fe 6.3           wt% Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004 O'Neill & Palme 1998
Primitive Mantle 26 Fe 8           wt% Estimates of major element composition of the Earth Primitive Mantle from Ringwood 1979. Palme & O'Neill 2004 Ringwood 1979
Primitive Mantle 26 Fe 7.8           wt% Estimates of major element composition of the Earth Primitive Mantle from Jagoutz et al. 1979. Palme & O'Neill 2004 Jagoutz et al. 1979
Primitive Mantle 26 Fe 7.5           wt% Estimates of major element composition of the Earth Primitive Mantle from Wanke et al. 1984. Palme & O'Neill 2004 Wanke et al. 1984
Primitive Mantle   Fe/Al 2.7             Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts.and basalts. McDonough & Sun 1995
Primitive Mantle   Fe/Al 2.683   0.01         Primitive mantle ratios (in wt. %) of lithophile elements used to attempt to estimate the composition of the Earth. Values are obtained by using the same approach as were utilized by a number of previous references. However, in this study the difference is that siderophile elements (or all elements suspected of entering the Earth's core) are omitted, therein retaining only the major lithophile elements. The idea behind the omission of the siderophile elements in this study is that the ratios of the elements which do not enter the core (lithophile) are the same in the bluk Earth as in the mantle. Allegre et al. 1995
Primitive Mantle   Fe/Co 620             McDonough 1991
Primitive Mantle   Fe/Cr 25             McDonough 1991
Primitive Mantle   Fe/Cr 23.8             Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts.and basalts. McDonough & Sun 1995
Primitive Mantle   Fe/Mg 0.255   0.005         Primitive mantle ratios (in wt. %) of lithophile elements used to attempt to estimate the composition of the Earth. Values are obtained by using the same approach as were utilized by a number of previous references. However, in this study the difference is that siderophile elements (or all elements suspected of entering the Earth's core) are omitted, therein retaining only the major lithophile elements. The idea behind the omission of the siderophile elements in this study is that the ratios of the elements which do not enter the core (lithophile) are the same in the bluk Earth as in the mantle. Allegre et al. 1995
Primitive Mantle   Fe/Mn 61             McDonough 1991
Primitive Mantle   Fe/Ni 35             McDonough 1991
Primitive Mantle   Fe/Ni 31.9             Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts.and basalts. McDonough & Sun 1995
Primitive Mantle   FeO/Ni 44             Selected ratios for Primitive mantle abundances averaged from various sources in an effort to compare and contrast values obtained by McDonough 1990 for spinel peridotite xenoliths and their relative associations with the composition of the Earth's Mantle. McDonough 1990 McDonough & Frey 1989
Sun & McDonough 1989
Sun 1982
Primitive Mantle 31 Ga 4.4   0.22       ppm Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: versus MgO Palme & O'Neill 2004 O'Neill & Palme 1998
Primitive Mantle 31 Ga 3           ppm Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Jagoutz et al. 1979
Primitive Mantle 31 Ga 4   0.4       ppm Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 31 Ga 4.4           ppm Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004 O'Neill & Palme 1998
Primitive Mantle 31 Ga 0.03             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Sun 1982
Primitive Mantle 31 Ga   3.9         ppm McDonough 1991 McDonough & Frey 1989
Sun 1982
Primitive Mantle 31 Ga 3.9           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Jagoutz et al. 1979
Primitive Mantle 31 Ga 3.7           ppm Primitive mantle 94% Balmuccia and 6% MORB. Primitive mantle concentrations derived from correlations of Li, Na, Sc, Ti, V, Gal, Y, Zr, HREE and Hf with Al2O3 in the peridotites at 4%. Wedepohl & Hartmann 1994
Primitive Mantle 31 Ga 3.4           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Primitive Mantle 31 Ga 4           ppm Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 McDonough & Sun 1995
Primitive Mantle 64 Gd 0.584           ppm Model compositions for Earth's Primitive mantle as based on analysis from McDonough & Sun 1989 (in prep). McDonough & Frey 1989 McDonough & Sun 1989
Primitive Mantle 64 Gd 0.5128           ppm Trace element abundances in the Earth's Primitive mantle given in ppm as was first found by Hart and Zindler 1986. The major element factor of 2.51 was used to obtain the mantle values of the refractory trace elements from the abundances of C1 Carbonaceous chondrites. Hofmann 1988 Hart & Zindler 1986
Primitive Mantle 64 Gd   0.595         ppm McDonough 1991 McDonough & Frey 1989
Sun 1982
Primitive Mantle 64 Gd 0.459           ppm Model compositions for Earth's Primitive mantle as based on analysis from Taylor and McLennan 1985. McDonough & Frey 1989 Taylor & McLennan 1985
Primitive Mantle 64 Gd 0.513           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Hofmann 1988
Primitive Mantle 64 Gd 571           ppb Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004
Primitive Mantle 64 Gd 571   57.1       ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: RLE Palme & O'Neill 2004
Primitive Mantle 64 Gd 0.506           ppm Model compositions for Earth's Primitive mantle as based on analysis from Hart and Zindler 1987. McDonough & Frey 1989 Hart & Zindler 1986
Primitive Mantle 64 Gd 0.44           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Primitive Mantle 64 Gd 0.74           ppm Model compositions for Earth's Primitive mantle as based on analysis from W¿nke et al. 1984. McDonough & Frey 1989 Wanke et al. 1984
Primitive Mantle 64 Gd 544   54.4       ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 64 Gd 0.605           ppm Model compositions for Earth's Primitive mantle as based on analysis from Sun 1982. McDonough & Frey 1989 Sun 1982
Primitive Mantle 64 Gd 0.5           ppm Primitive mantle 94% Balmuccia and 6% MORB. Primitive mantle concentrations derived from correlations of Li, Na, Sc, Ti, V, Gal, Y, Zr, HREE and Hf with Al2O3 in the peridotites at 4%. Wedepohl & Hartmann 1994
Primitive Mantle 32 Ge 1.2   0.24       ppm Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: versus SiO2 Palme & O'Neill 2004 O'Neill & Palme 1998
Primitive Mantle 32 Ge 1.2           ppm Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004 O'Neill & Palme 1998
Primitive Mantle 32 Ge 1.1   0.165       ppm Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 1 H 0.012   0.0024       wt% Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: Mass balance Palme & O'Neill 2004 O'Neill & Palme 1998
Primitive Mantle 72 Hf 283   28.3       ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 72 Hf 300           ppb Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004
Primitive Mantle 72 Hf 0.2676           ppm Trace element abundances in the Earth's Primitive mantle given in ppm as was first found by Hart and Zindler 1986. The major element factor of 2.51 was used to obtain the mantle values of the refractory trace elements from the abundances of C1 Carbonaceous chondrites. Hofmann 1988 Hart & Zindler 1986
Primitive Mantle 72 Hf 0.31           ppm Concentration of the Primitive mantle as given by McDonough & Frey 1989 and Sun 1982. Values given are placed next to average concentrations of Continental lithospheric mantle in an effort to calculate the proportional contribution to the Primitive mantle. This calculation assumes that the Continental lithospheric mantle is 1.45% the mass of the Primitive mantle. McDonough 1990 McDonough & Frey 1989
Sun 1982
Primitive Mantle 72 Hf 0.34           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Jagoutz et al. 1979
Primitive Mantle 72 Hf 0.268           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Hofmann 1988
Primitive Mantle 72 Hf 0.2           ppm Primitive mantle 94% Balmuccia and 6% MORB. Primitive mantle concentrations derived from correlations of Li, Na, Sc, Ti, V, Gal, Y, Zr, HREE and Hf with Al2O3 in the peridotites at 4%. Wedepohl & Hartmann 1994
Primitive Mantle 72 Hf 0.26           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Primitive Mantle 72 Hf 300   30       ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: RLE Palme & O'Neill 2004
Primitive Mantle 80 Hg 6           ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: Hg/Se = 0.075. Standard deviations are uncertain and greater than 50%. Palme & O'Neill 2004
Primitive Mantle 80 Hg 10           ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 67 Ho 0.128           ppm Model compositions for Earth's Primitive mantle as based on analysis from Taylor and McLennan 1985. McDonough & Frey 1989 Taylor & McLennan 1985
Primitive Mantle 67 Ho 159   23.85       ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: RLE Palme & O'Neill 2004
Primitive Mantle 67 Ho 149   14.9       ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 67 Ho 0.1423           ppm Trace element abundances in the Earth's Primitive mantle given in ppm as was first found by Hart and Zindler 1986. The major element factor of 2.51 was used to obtain the mantle values of the refractory trace elements from the abundances of C1 Carbonaceous chondrites. Hofmann 1988 Hart & Zindler 1986
Primitive Mantle 67 Ho 0.14           ppm Model compositions for Earth's Primitive mantle as based on analysis from Hart and Zindler 1987. McDonough & Frey 1989 Hart & Zindler 1986
Primitive Mantle 67 Ho 0.181           ppm Model compositions for Earth's Primitive mantle as based on analysis from W¿nke et al. 1984. McDonough & Frey 1989 Wanke et al. 1984
Primitive Mantle 67 Ho 0.161           ppm Model compositions for Earth's Primitive mantle as based on analysis from McDonough & Sun 1989 (in prep). McDonough & Frey 1989 McDonough & Sun 1989
Primitive Mantle 67 Ho 0.167           ppm Model compositions for Earth's Primitive mantle as based on analysis from Sun 1982. McDonough & Frey 1989 Sun 1982
Primitive Mantle 67 Ho 159           ppb Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004
Primitive Mantle 53 I 10           ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 53 I 7           ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: Mass balance. Standard deviations are uncertain and greater than 50%. Palme & O'Neill 2004 O'Neill & Palme 1998
Primitive Mantle 49 In 11   4.4       ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 49 In 13           ppb Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004 Yi et al. 2000
Primitive Mantle 49 In 13   5.2       ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: In/Y = 3 ¿ 1E-3, spinel lherzolites Palme & O'Neill 2004 Yi et al. 2000
Primitive Mantle 77 Ir 3.2           ppb Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004 Morgan et al. 2001
Primitive Mantle 77 Ir   3.3         ppm McDonough 1991 McDonough & Frey 1989
Sun 1982
Primitive Mantle 77 Ir 3.2   0.96       ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 77 Ir 3.2   0.32       ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: av. PM analyses Palme & O'Neill 2004 Morgan et al. 2001
Primitive Mantle 19 K 240   48       ppm Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 19 K 0.029           wt%ox Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. McDonough & Sun 1995
Primitive Mantle 19 K 258           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Hofmann 1988
Primitive Mantle 19 K 260           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Jagoutz et al. 1979
Primitive Mantle 19 K 450           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Primitive Mantle 19 K 0.031           wt%ox Pyrolite model of the silicate Earth based on the least depleted ultramafic xenolith model according to Jagoutz et al. 1979. Compositions are given in weight percent per silicate oxide. McDonough & Sun 1995 Jagoutz et al. 1979
Primitive Mantle 19 K 0.003           wt%ox Pyrolite model of the silicate Earth based on the MORB-harzburgite model according to Green et al. 1979. Compositions are given in weight percent per silicate oxide. McDonough & Sun 1995 Green et al. 1979
Primitive Mantle 19 K 0.022           wt%ox Bulk silicate Earth model based on C1 Carbonaceous Chondrite values of major element oxides as taken from Taylor and McLennan 1985. McDonough & Sun 1995 Taylor & McLennan 1985
Primitive Mantle 19 K 0.0337           wt%ox Minor oxides of the primitive mantle (in wt.%) that comprise the remnant portions of the Earth's mantle. In this particular study the sum of the minor oxides is taken and normalized to 100% in an effort to obtain the absolute values of each element, which are then used for comparison to prior studies conducted of the Earth's mantle. Allegre et al. 1995
Primitive Mantle 19 K 0.02           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Taylor and McLennan 1985. McDonough & Frey 1989 Taylor & McLennan 1985
Primitive Mantle 19 K 0.018           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Anderson 1983. McDonough & Frey 1989 Anderson 1983
Primitive Mantle 19 K 0.028           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from McDonough & Sun 1989 (in prep). McDonough & Frey 1989 McDonough & Sun 1989
Primitive Mantle 19 K 0.028           wt%ox Estimates of major element oxide composition from the Primitive mantle as given by McDonough & Frey 1989 and Sun 1982. These values show that average Primitive mantle has roughly the same compositional values as Garnet/Spinel peridotites with some exceptions. McDonough 1990 McDonough & Frey 1989
Sun 1982
Primitive Mantle 19 K   0.028         wt%ox McDonough 1991 McDonough & Frey 1989
Sun 1982
Primitive Mantle 19 K 0.03           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Ringwood 1979. McDonough & Frey 1989 Ringwood 1979
Primitive Mantle 19 K 0.03           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Sun 1982. McDonough & Frey 1989 Sun 1982
Primitive Mantle 19 K 0.03           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from W¿nke et al. 1984. McDonough & Frey 1989 Wanke et al. 1984
Primitive Mantle 19 K 0.032           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Hart and Zindler 1987. McDonough & Frey 1989 Hart & Zindler 1986
Primitive Mantle 19 K 260           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Jagoutz et al. 1979
Primitive Mantle 19 K 260           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Jacobsen & Wasserburg 1979
Primitive Mantle 19 K 230           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Sun 1982
Primitive Mantle 19 K 517           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone.  Hofmann & White 1983 Palme et al. 1981
Primitive Mantle 19 K 258.2           ppm Trace element abundances in the Earth's Primitive mantle given in ppm as was first found by Hart and Zindler 1986. The major element factor of 2.51 was used to obtain the mantle values of the refractory trace elements from the abundances of C1 Carbonaceous chondrites. Hofmann 1988 Hart & Zindler 1986
Primitive Mantle 19 K 193           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Larimer 1971
Primitive Mantle 19 K 160           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Shaw 1972
Primitive Mantle 19 K 252           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Ganapathy & Anders 1974
Primitive Mantle 19 K 286           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Ringwood & Kesson 1977
Primitive Mantle 19 K 193           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Smith 1977
Primitive Mantle 19 K 240           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Sun & Nesbitt 1977
Primitive Mantle 19 K 0.029           wt% Primitive Upper Mantle (PUM) major element compositions as measured by McDonough & Sun 1995. All mineral compositions normalized to 100%. Workman & Hart 2005 McDonough & Sun 1995
Primitive Mantle 19 K 260           ppm Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004 O'Neill & Palme 1998
Primitive Mantle 19 K 0.03           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Hart & Zindler 1986
Primitive Mantle 19 K 0.03           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Jagoutz et al. 1979
Primitive Mantle 19 K 0.29           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 McDonough & Sun 1995
Primitive Mantle 19 K 0.03           wt% PRIMA (PRImitive MAntle) model of fertile upper mantle composition given by Allegre et al. 1995. Walter 2004 Allegre et al. 1995
Primitive Mantle 19 K 0.03           wt% Primitive mantle model of upper mantle composition from Palme and O'Neill Treatise on Geochemistry Chapter 2.01. Walter 2004 Palme & O'Neill 2004
Primitive Mantle 19 K 260   39       ppm Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: Mean of K/U and K/La Palme & O'Neill 2004 O'Neill & Palme 1998
Primitive Mantle   K/Rb 310             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Larimer 1971
Primitive Mantle   K/Rb 265             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Smith 1977
Primitive Mantle   K/Rb 320             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Jagoutz et al. 1979
Primitive Mantle   K/Rb 410             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Jacobsen & Wasserburg 1979
Primitive Mantle   K/Rb 355             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Sun & Nesbitt 1977
Primitive Mantle   K/Rb 270             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Shaw 1972
Primitive Mantle   K/Rb 290             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Ganapathy & Anders 1974
Primitive Mantle   K/Rb 335             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Ringwood & Kesson 1977
Primitive Mantle   K/U 1             Element ratios from the Primitive Mantle as given by Hofmann 1988. Gao et al. 1998 Hofmann 1988
Primitive Mantle 36 Kr 0.417           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Hofmann 1988
Primitive Mantle 57 La 648   64.8       ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 57 La 686   68.6       ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: RLE Palme & O'Neill 2004
Primitive Mantle 57 La 686           ppb Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004
Primitive Mantle 57 La 0.6139           ppm Trace element abundances in the Earth's Primitive mantle given in ppm as was first found by Hart and Zindler 1986. The major element factor of 2.51 was used to obtain the mantle values of the refractory trace elements from the abundances of C1 Carbonaceous chondrites. Hofmann 1988 Hart & Zindler 1986
Primitive Mantle 57 La 0.603           ppm Model compositions for Earth's Primitive mantle as based on analysis from Hart and Zindler 1987. McDonough & Frey 1989 Hart & Zindler 1986
Primitive Mantle 57 La 0.52           ppm Model compositions for Earth's Primitive mantle as based on analysis from W¿nke et al. 1984. McDonough & Frey 1989 Wanke et al. 1984
Primitive Mantle 57 La 0.72           ppm Model compositions for Earth's Primitive mantle as based on analysis from Sun 1982. McDonough & Frey 1989 Sun 1982
Primitive Mantle 57 La   0.708         ppm McDonough 1991 McDonough & Frey 1989
Sun 1982
Primitive Mantle 57 La 0.71           ppm Concentration of the Primitive mantle as given by McDonough & Frey 1989 and Sun 1982. Values given are placed next to average concentrations of Continental lithospheric mantle in an effort to calculate the proportional contribution to the Primitive mantle. This calculation assumes that the Continental lithospheric mantle is 1.45% the mass of the Primitive mantle. McDonough 1990 McDonough & Frey 1989
Sun 1982
Primitive Mantle 57 La 0.695           ppm Model compositions for Earth's Primitive mantle as based on analysis from McDonough & Sun 1989 (in prep). McDonough & Frey 1989 McDonough & Sun 1989
Primitive Mantle 57 La 0.57           ppm Model compositions for Earth's Primitive mantle as based on analysis from Anderson 1983. McDonough & Frey 1989 Anderson 1983
Primitive Mantle 57 La 0.551           ppm Model compositions for Earth's Primitive mantle as based on analysis from Taylor and McLennan 1985. McDonough & Frey 1989 Taylor & McLennan 1985
Primitive Mantle 57 La 0.614           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Hofmann 1988
Primitive Mantle 57 La 0.7           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Jagoutz et al. 1979
Primitive Mantle 57 La 0.27           ppm Primitive mantle 94% Balmuccia and 6% MORB. Primitive mantle concentrations derived from correlations of Li, Na, Sc, Ti, V, Gal, Y, Zr, HREE and Hf with Al2O3 in the peridotites at 4%. Wedepohl & Hartmann 1994
Primitive Mantle 57 La 0.76           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Primitive Mantle   La/Nb 1             Element ratios from the Primitive Mantle as given by Hofmann 1988. Gao et al. 1998 Hofmann 1988
Primitive Mantle   La[n]/Sm[n] 1             Selected ratios for Primitive mantle abundances averaged from various sources in an effort to compare and contrast values obtained by McDonough 1990 for spinel peridotite xenoliths and their relative associations with the composition of the Earth's Mantle. McDonough 1990 McDonough & Frey 1989
Sun & McDonough 1989
Sun 1982
Primitive Mantle   La[n]/Yb[n] 1             Selected ratios for Primitive mantle abundances averaged from various sources in an effort to compare and contrast values obtained by McDonough 1990 for spinel peridotite xenoliths and their relative associations with the composition of the Earth's Mantle. McDonough 1990 McDonough & Frey 1989
Sun & McDonough 1989
Sun 1982
Primitive Mantle 3 Li 1.6   0.32       ppm Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: Data on mantle rocks Palme & O'Neill 2004 Jagoutz et al. 1979
Ryan & Langmuir 1987
Seitz and Woodland 2000
Primitive Mantle 3 Li 2.4           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Jagoutz et al. 1979
Primitive Mantle 3 Li 2.7           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Primitive Mantle 3 Li 2.2           ppm Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004 Jagoutz et al. 1979
Ryan & Langmuir 1987
Seitz and Woodland 2000
Primitive Mantle 3 Li 1.6   0.48       ppm Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 3 Li 2.6           ppm Primitive mantle 94% Balmuccia and 6% MORB. Primitive mantle concentrations derived from correlations of Li, Na, Sc, Ti, V, Gal, Y, Zr, HREE and Hf with Al2O3 in the peridotites at 4%. Wedepohl & Hartmann 1994
Primitive Mantle 71 Lu 0.066           ppm Primitive mantle 94% Balmuccia and 6% MORB. Primitive mantle concentrations derived from correlations of Li, Na, Sc, Ti, V, Gal, Y, Zr, HREE and Hf with Al2O3 in the peridotites at 4%. Wedepohl & Hartmann 1994
Primitive Mantle 71 Lu   0.074         ppm McDonough 1991 McDonough & Frey 1989
Sun 1982
Primitive Mantle 71 Lu 0.063           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Primitive Mantle 71 Lu 67.5   6.75       ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 71 Lu 71.1   10.665       ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: RLE Palme & O'Neill 2004
Primitive Mantle 71 Lu 0.0637           ppm Trace element abundances in the Earth's Primitive mantle given in ppm as was first found by Hart and Zindler 1986. The major element factor of 2.51 was used to obtain the mantle values of the refractory trace elements from the abundances of C1 Carbonaceous chondrites. Hofmann 1988 Hart & Zindler 1986
Primitive Mantle 71 Lu 0.0749           ppm Model compositions for Earth's Primitive mantle as based on analysis from Sun 1982. McDonough & Frey 1989 Sun 1982
Primitive Mantle 71 Lu 0.069           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Jagoutz et al. 1979
Primitive Mantle 71 Lu 0.064           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Hofmann 1988
Primitive Mantle 71 Lu 0.057           ppm Model compositions for Earth's Primitive mantle as based on analysis from Taylor and McLennan 1985. McDonough & Frey 1989 Taylor & McLennan 1985
Primitive Mantle 71 Lu 0.0627           ppm Model compositions for Earth's Primitive mantle as based on analysis from Hart and Zindler 1987. McDonough & Frey 1989 Hart & Zindler 1986
Primitive Mantle 71 Lu 0.0724           ppm Model compositions for Earth's Primitive mantle as based on analysis from McDonough & Sun 1989 (in prep). McDonough & Frey 1989 McDonough & Sun 1989
Primitive Mantle 71 Lu 71.7           ppb Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004
Primitive Mantle 71 Lu 0.074           ppm Model compositions for Earth's Primitive mantle as based on analysis from W¿nke et al. 1984. McDonough & Frey 1989 Wanke et al. 1984
Primitive Mantle 71 Lu 0.06           ppm Model compositions for Earth's Primitive mantle as based on analysis from Anderson 1983. McDonough & Frey 1989 Anderson 1983
Primitive Mantle 12 Mg 36.8           wt% Estimates of major element composition of the Earth Primitive Mantle from Wanke et al. 1984. Palme & O'Neill 2004 Wanke et al. 1984
Primitive Mantle 12 Mg 35.5           wt% Estimates of major element composition of the Earth Primitive Mantle from Palme & Nickel 1985. Palme & O'Neill 2004 Palme & Nickel 1985
Primitive Mantle 12 Mg 37.8           wt% Estimates of major element composition of the Earth Primitive Mantle from Hart & Zindler 1986. Palme & O'Neill 2004 Hart & Zindler 1986
Primitive Mantle 12 Mg 37.8           wt% Estimates of major element composition of the Earth Primitive Mantle from McDonough & Sun 1995. Palme & O'Neill 2004 McDonough & Sun 1995
Primitive Mantle 12 Mg 38.3           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Jagoutz et al. 1979
Primitive Mantle 12 Mg 35.5           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Palme & Nickel 1985
Primitive Mantle 12 Mg 37.8           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 McDonough & Sun 1995
Primitive Mantle 12 Mg 37.77           wt% Estimates of major element composition of the Earth Primitive Mantle from Allegre et al. 1995. Palme & O'Neill 2004 Allegre et al. 1995
Primitive Mantle 12 Mg 37.77           wt% PRIMA (PRImitive MAntle) model of fertile upper mantle composition given by Allegre et al. 1995. Walter 2004 Allegre et al. 1995
Primitive Mantle 12 Mg 36.78           wt% Primitive mantle model of upper mantle composition from Palme and O'Neill Treatise on Geochemistry Chapter 2.01. Walter 2004 Palme & O'Neill 2004
Primitive Mantle 12 Mg 22.17   0.2217       wt% Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: Major element Palme & O'Neill 2004
Primitive Mantle 12 Mg 22.8   2.28       wt% Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 12 Mg 37.8           wt%ox Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. McDonough & Sun 1995
Primitive Mantle 12 Mg 229060           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Primitive Mantle 12 Mg 38.3           wt%ox Pyrolite model of the silicate Earth based on the least depleted ultramafic xenolith model according to Jagoutz et al. 1979. Compositions are given in weight percent per silicate oxide. McDonough & Sun 1995 Jagoutz et al. 1979
Primitive Mantle 12 Mg 38.8           wt%ox Pyrolite model of the silicate Earth based on the MORB-harzburgite model according to Green et al. 1979. Compositions are given in weight percent per silicate oxide. McDonough & Sun 1995 Green et al. 1979
Primitive Mantle 12 Mg 35.15           wt%ox Bulk silicate Earth model based on C1 Carbonaceous Chondrite values of major element oxides as taken from Taylor and McLennan 1985. McDonough & Sun 1995 Taylor & McLennan 1985
Primitive Mantle 12 Mg 37.77           wt%ox Major oxides of the primitive mantle that are estimated to comprise the bulk of the Earth's mantle (measured in wt.%). Allegre et al. 1995
Primitive Mantle 12 Mg 35.1           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Taylor and McLennan 1985. McDonough & Frey 1989 Taylor & McLennan 1985
Primitive Mantle 12 Mg 88.7             Model compositions for Earth's Primitive mantle as based on analysis from Taylor and McLennan 1985. McDonough & Frey 1989 Taylor & McLennan 1985
Primitive Mantle 12 Mg 34.02           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Anderson 1983. McDonough & Frey 1989 Anderson 1983
Primitive Mantle 12 Mg 88.5             Model compositions for Earth's Primitive mantle as based on analysis from Anderson 1983. McDonough & Frey 1989 Anderson 1983
Primitive Mantle 12 Mg 35.5           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Palme and Nickel 1985. McDonough & Frey 1989 Palme & Nickel 1985
Primitive Mantle 12 Mg 89.1             Model compositions for Earth's Primitive mantle as based on analysis from Palme and Nickel 1985. McDonough & Frey 1989 Palme & Nickel 1985
Primitive Mantle 12 Mg 37.2           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from McDonough & Sun 1989 (in prep). McDonough & Frey 1989 McDonough & Sun 1989
Primitive Mantle 12 Mg 89.2             Model compositions for Earth's Primitive mantle as based on analysis from McDonough & Sun 1989 (in prep). McDonough & Frey 1989 McDonough & Sun 1989
Primitive Mantle 12 Mg 37.2           wt%ox Estimates of major element oxide composition from the Primitive mantle as given by McDonough & Frey 1989 and Sun 1982. These values show that average Primitive mantle has roughly the same compositional values as Garnet/Spinel peridotites with some exceptions. McDonough 1990 McDonough & Frey 1989
Sun 1982
Primitive Mantle 12 Mg 88.8             Estimates of major element oxide composition from the Primitive mantle as given by McDonough & Frey 1989 and Sun 1982. These values show that average Primitive mantle has roughly the same compositional values as Garnet/Spinel peridotites with some exceptions. Mg-value is the molar ratios of 100 Mg/(Mg + SFe). McDonough 1990 McDonough & Frey 1989
Sun 1982
Primitive Mantle 12 Mg 22.5           wt% Concentration of the Primitive mantle as given by McDonough & Frey 1989 and Sun 1982. Values given are placed next to average concentrations of Continental lithospheric mantle in an effort to calculate the proportional contribution to the Primitive mantle. This calculation assumes that the Continental lithospheric mantle is 1.45% the mass of the Primitive mantle. McDonough 1990 McDonough & Frey 1989
Sun 1982
Primitive Mantle 12 Mg   37.2         wt%ox McDonough 1991 McDonough & Frey 1989
Sun 1982
Primitive Mantle 12 Mg   88.8           McDonough 1991 McDonough & Frey 1989
Sun 1982
Primitive Mantle 12 Mg 38.1           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Ringwood 1979. McDonough & Frey 1989 Ringwood 1979
Primitive Mantle 12 Mg 89.5           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Ringwood 1979. McDonough & Frey 1989 Ringwood 1979
Primitive Mantle 12 Mg 38           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Sun 1982. McDonough & Frey 1989 Sun 1982
Primitive Mantle 12 Mg 89.2             Model compositions for Earth's Primitive mantle as based on analysis from Sun 1982. McDonough & Frey 1989 Sun 1982
Primitive Mantle 12 Mg 36.85           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from W¿nke et al. 1984. McDonough & Frey 1989 Wanke et al. 1984
Primitive Mantle 12 Mg 89.6             Model compositions for Earth's Primitive mantle as based on analysis from W¿nke et al. 1984. McDonough & Frey 1989 Wanke et al. 1984
Primitive Mantle 12 Mg 37.78           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Hart and Zindler 1987. McDonough & Frey 1989 Hart & Zindler 1986
Primitive Mantle 12 Mg 89.9             Model compositions for Earth's Primitive mantle as based on analysis from Hart and Zindler 1987. McDonough & Frey 1989 Hart & Zindler 1986
Primitive Mantle 12 Mg 37.78           wt%ox Major oxide elemental abundances in weight percent from Earth's Primitive Mantle as were first given by Hart and Zindler 1986.  Hofmann 1988 Hart & Zindler 1986
Primitive Mantle 12 Mg 37.71           wt% Primitive Upper Mantle (PUM) major element compositions as measured by McDonough & Sun 1995. All mineral compositions normalized to 100%. Workman & Hart 2005 McDonough & Sun 1995
Primitive Mantle 12 Mg 89.3             Mg #= Molar ratio of Mg/(Mg+Fe^2+); Mg # of N-MORB uses 90% total FeO as Fe2+. Workman & Hart 2005 McDonough & Sun 1995
Primitive Mantle 12 Mg 36.77   0.44       wt% Major element composition of the Earth Primitive Mantle, measurements by Palme & O'Neill 2004. Palme & O'Neill 2004
Primitive Mantle 12 Mg 38.1           wt% Estimates of major element composition of the Earth Primitive Mantle from Ringwood 1979. Palme & O'Neill 2004 Ringwood 1979
Primitive Mantle 12 Mg 37.78           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Hart & Zindler 1986
Primitive Mantle 12 Mg 22.17           wt% Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004
Primitive Mantle 12 Mg 38.3           wt% Estimates of major element composition of the Earth Primitive Mantle from Jagoutz et al. 1979. Palme & O'Neill 2004 Jagoutz et al. 1979
Primitive Mantle   Mg# 0.9             Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Jagoutz et al. 1979
Primitive Mantle   Mg# 89             Mg# of all the above models pertaning to fertile upper mantle compositions. Walter 2004 Palme & O'Neill 2004
Primitive Mantle   Mg# 89.8             Mg# of all the above models pertaning to fertile upper mantle compositions. Walter 2004 Allegre et al. 1995
Primitive Mantle   Mg# 0.89             Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 McDonough & Sun 1995
Primitive Mantle   Mg# 0.9             Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Hart & Zindler 1986
Primitive Mantle   Mg# 0.89             Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Palme & Nickel 1985
Primitive Mantle   Mg/Al 9.7             Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts.and basalts. McDonough & Sun 1995
Primitive Mantle   Mg/Al 10.52   0.1         Primitive mantle ratios (in wt. %) of lithophile elements used to attempt to estimate the composition of the Earth. Values are obtained by using the same approach as were utilized by a number of previous references. However, in this study the difference is that siderophile elements (or all elements suspected of entering the Earth's core) are omitted, therein retaining only the major lithophile elements. The idea behind the omission of the siderophile elements in this study is that the ratios of the elements which do not enter the core (lithophile) are the same in the bluk Earth as in the mantle. Allegre et al. 1995
Primitive Mantle   Mg/Si 1.09             Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Jagoutz et al. 1979
Primitive Mantle   Mg/Si 0.99             Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Palme & Nickel 1985
Primitive Mantle   Mg/Si 1.09             Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 McDonough & Sun 1995
Primitive Mantle   Mg/Si 1.06             Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Hart & Zindler 1986
Primitive Mantle   MgO/Ni 197             McDonough 1991
Primitive Mantle   MgO/Ni 196             Selected ratios for Primitive mantle abundances averaged from various sources in an effort to compare and contrast values obtained by McDonough 1990 for spinel peridotite xenoliths and their relative associations with the composition of the Earth's Mantle. McDonough 1990 McDonough & Frey 1989
Sun & McDonough 1989
Sun 1982
Primitive Mantle   MgO/SiO2 0.81             Primitive mantle model of upper mantle composition from Palme and O'Neill Treatise on Geochemistry Chapter 2.01. Walter 2004 Palme & O'Neill 2004
Primitive Mantle   MgO/SiO2 0.82             PRIMA (PRImitive MAntle) model of fertile upper mantle composition given by Allegre et al. 1995. Walter 2004 Allegre et al. 1995
Primitive Mantle 25 Mn 0.13           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Palme and Nickel 1985. McDonough & Frey 1989 Palme & Nickel 1985
Primitive Mantle 25 Mn 0.14           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from McDonough & Sun 1989 (in prep). McDonough & Frey 1989 McDonough & Sun 1989
Primitive Mantle 25 Mn 0.14           wt%ox Estimates of major element oxide composition from the Primitive mantle as given by McDonough & Frey 1989 and Sun 1982. These values show that average Primitive mantle has roughly the same compositional values as Garnet/Spinel peridotites with some exceptions. McDonough 1990 McDonough & Frey 1989
Sun 1982
Primitive Mantle 25 Mn 0.131           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Anderson 1983. McDonough & Frey 1989 Anderson 1983
Primitive Mantle 25 Mn 0.13           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Taylor and McLennan 1985. McDonough & Frey 1989 Taylor & McLennan 1985
Primitive Mantle 25 Mn 0.149           wt%ox Minor oxides of the primitive mantle (in wt.%) that comprise the remnant portions of the Earth's mantle. In this particular study the sum of the minor oxides is taken and normalized to 100% in an effort to obtain the absolute values of each element, which are then used for comparison to prior studies conducted of the Earth's mantle. Allegre et al. 1995
Primitive Mantle 25 Mn 0.13           wt%ox Bulk silicate Earth model based on C1 Carbonaceous Chondrite values of major element oxides as taken from Taylor and McLennan 1985. McDonough & Sun 1995 Taylor & McLennan 1985
Primitive Mantle 25 Mn 0.11           wt%ox Pyrolite model of the silicate Earth based on the MORB-harzburgite model according to Green et al. 1979. Compositions are given in weight percent per silicate oxide. McDonough & Sun 1995 Green et al. 1979
Primitive Mantle 25 Mn 0.13           wt%ox Pyrolite model of the silicate Earth based on the least depleted ultramafic xenolith model according to Jagoutz et al. 1979. Compositions are given in weight percent per silicate oxide. McDonough & Sun 1995 Jagoutz et al. 1979
Primitive Mantle 25 Mn 1013           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Jagoutz et al. 1979
Primitive Mantle 25 Mn 1050           ppm Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004 O'Neill & Palme 1998
Primitive Mantle 25 Mn 0.135           wt%ox Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. McDonough & Sun 1995
Primitive Mantle 25 Mn 1045   104.5       ppm Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 25 Mn 0.14           wt% Primitive mantle model of upper mantle composition from Palme and O'Neill Treatise on Geochemistry Chapter 2.01. Walter 2004 Palme & O'Neill 2004
Primitive Mantle 25 Mn 1050   105       ppm Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: versus MgO Palme & O'Neill 2004 O'Neill & Palme 1998
Primitive Mantle 25 Mn 0.15           wt% PRIMA (PRImitive MAntle) model of fertile upper mantle composition given by Allegre et al. 1995. Walter 2004 Allegre et al. 1995
Primitive Mantle 25 Mn 0.14           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 McDonough & Sun 1995
Primitive Mantle 25 Mn 0.13           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Palme & Nickel 1985
Primitive Mantle 25 Mn 0.14           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Jagoutz et al. 1979
Primitive Mantle 25 Mn 1045           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Primitive Mantle 25 Mn 0.13           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Hart & Zindler 1986
Primitive Mantle 25 Mn 0.13           wt% Primitive Upper Mantle (PUM) major element compositions as measured by McDonough & Sun 1995. All mineral compositions normalized to 100%. Workman & Hart 2005 McDonough & Sun 1995
Primitive Mantle 25 Mn 0.13           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Hart and Zindler 1987. McDonough & Frey 1989 Hart & Zindler 1986
Primitive Mantle 25 Mn   0.14         wt%ox McDonough 1991 McDonough & Frey 1989
Sun 1982
Primitive Mantle 25 Mn 0.15           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Ringwood 1979. McDonough & Frey 1989 Ringwood 1979
Primitive Mantle 25 Mn 0.14           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Sun 1982. McDonough & Frey 1989 Sun 1982
Primitive Mantle 25 Mn 0.13           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from W¿nke et al. 1984. McDonough & Frey 1989 Wanke et al. 1984
Primitive Mantle 42 Mo 1.1             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone.  Hofmann & White 1983 Palme et al. 1981
Primitive Mantle 42 Mo 39   15.6       ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: Mo/Ce = 0.027 ¿ 012, Mo/Nb = 0.05 ¿ .015 Palme & O'Neill 2004 Sims et al. 1990
Fitton 1995
Primitive Mantle 42 Mo 39           ppm Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004 Sims et al. 1990
Fitton 1995
Primitive Mantle 42 Mo 50   20       ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 7 N 2           ppm Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 7 N 2           ppm Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: Mass balance. Standard deviations are uncertain and greater than 50%. Palme & O'Neill 2004 Zhang & Zindler 1993
Primitive Mantle 11 Na 0.39           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from W¿nke et al. 1984. McDonough & Frey 1989 Wanke et al. 1984
Primitive Mantle 11 Na 0.332           wt%ox Major oxide elemental abundances in weight percent from Earth's Primitive Mantle as were first given by Hart and Zindler 1986.  Hofmann 1988 Hart & Zindler 1986
Primitive Mantle 11 Na 0.39           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Sun 1982. McDonough & Frey 1989 Sun 1982
Primitive Mantle 11 Na 0.4           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Ringwood 1979. McDonough & Frey 1989 Ringwood 1979
Primitive Mantle 11 Na 2670   401       ppm Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 11 Na 0.36           wt% PRIMA (PRImitive MAntle) model of fertile upper mantle composition given by Allegre et al. 1995. Walter 2004 Allegre et al. 1995
Primitive Mantle 11 Na 13           ppm Primitive mantle 94% Balmuccia and 6% MORB. Wedepohl & Hartmann 1994
Primitive Mantle 11 Na 1610           ppm Primitive mantle 94% Balmuccia and 6% MORB. Primitive mantle concentrations derived from correlations of Li, Na, Sc, Ti, V, Gal, Y, Zr, HREE and Hf with Al2O3 in the peridotites at 4%. Wedepohl & Hartmann 1994
Primitive Mantle 11 Na 2590   129.5       ppm Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: versus MgO Palme & O'Neill 2004 O'Neill & Palme 1998
Primitive Mantle 11 Na 0.36           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 McDonough & Sun 1995
Primitive Mantle 11 Na 2730           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Jagoutz et al. 1979
Primitive Mantle 11 Na 2460           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Hofmann 1988
Primitive Mantle 11 Na 0.35           wt% Primitive mantle model of upper mantle composition from Palme and O'Neill Treatise on Geochemistry Chapter 2.01. Walter 2004 Palme & O'Neill 2004
Primitive Mantle 11 Na 0.36           wt%ox Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. McDonough & Sun 1995
Primitive Mantle 11 Na 0.4           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Palme & Nickel 1985
Primitive Mantle 11 Na 1770           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Primitive Mantle 11 Na 0.33           wt%ox Pyrolite model of the silicate Earth based on the least depleted ultramafic xenolith model according to Jagoutz et al. 1979. Compositions are given in weight percent per silicate oxide. McDonough & Sun 1995 Jagoutz et al. 1979
Primitive Mantle 11 Na 0.4           wt%ox Pyrolite model of the silicate Earth based on the MORB-harzburgite model according to Green et al. 1979. Compositions are given in weight percent per silicate oxide. McDonough & Sun 1995 Green et al. 1979
Primitive Mantle 11 Na 0.34           wt%ox Bulk silicate Earth model based on C1 Carbonaceous Chondrite values of major element oxides as taken from Taylor and McLennan 1985. McDonough & Sun 1995 Taylor & McLennan 1985
Primitive Mantle 11 Na 0.36           wt%ox Minor oxides of the primitive mantle (in wt.%) that comprise the remnant portions of the Earth's mantle. In this particular study the sum of the minor oxides is taken and normalized to 100% in an effort to obtain the absolute values of each element, which are then used for comparison to prior studies conducted of the Earth's mantle. Allegre et al. 1995
Primitive Mantle 11 Na 0.34           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Taylor and McLennan 1985. McDonough & Frey 1989 Taylor & McLennan 1985
Primitive Mantle 11 Na 0.33           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Jagoutz et al. 1979
Primitive Mantle 11 Na 0.275           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Anderson 1983. McDonough & Frey 1989 Anderson 1983
Primitive Mantle 11 Na 0.33           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Hart & Zindler 1986
Primitive Mantle 11 Na 0.4           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Palme and Nickel 1985. McDonough & Frey 1989 Palme & Nickel 1985
Primitive Mantle 11 Na 0.34           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from McDonough & Sun 1989 (in prep). McDonough & Frey 1989 McDonough & Sun 1989
Primitive Mantle 11 Na 2590           ppm Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004 O'Neill & Palme 1998
Primitive Mantle 11 Na 0.34           wt%ox Estimates of major element oxide composition from the Primitive mantle as given by McDonough & Frey 1989 and Sun 1982. These values show that average Primitive mantle has roughly the same compositional values as Garnet/Spinel peridotites with some exceptions. McDonough 1990 McDonough & Frey 1989
Sun 1982
Primitive Mantle 11 Na 0.36           wt% Primitive Upper Mantle (PUM) major element compositions as measured by McDonough & Sun 1995. All mineral compositions normalized to 100%. Workman & Hart 2005 McDonough & Sun 1995
Primitive Mantle 11 Na 0.332           wt%ox Major oxide elemental abundances in weight percent from Earth's Primitive Mantle as were first given by Hart and Zindler 1986.  MgO = 8.0% Hofmann 1988 Hart & Zindler 1986
Primitive Mantle 11 Na   0.34         wt%ox McDonough 1991 McDonough & Frey 1989
Sun 1982
Primitive Mantle 11 Na 0.332           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Hart and Zindler 1987. McDonough & Frey 1989 Hart & Zindler 1986
Primitive Mantle 41 Nb 0.9           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Jagoutz et al. 1979
Primitive Mantle 41 Nb 0.618           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Hofmann 1988
Primitive Mantle 41 Nb 0.6           ppm Primitive mantle 94% Balmuccia and 6% MORB. Primitive mantle concentrations derived from correlations of Li, Na, Sc, Ti, V, Gal, Y, Zr, HREE and Hf with Al2O3 in the peridotites at 4%. Wedepohl & Hartmann 1994
Primitive Mantle 41 Nb 0.44           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Primitive Mantle 41 Nb 658   98.7       ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 41 Nb 588   117.6       ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: RLE Palme & O'Neill 2004
Primitive Mantle 41 Nb 0.6           ppm Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004
Primitive Mantle 41 Nb 0.6175           ppm Trace element abundances in the Earth's Primitive mantle given in ppm as was first found by Hart and Zindler 1986. The major element factor of 2.51 was used to obtain the mantle values of the refractory trace elements from the abundances of C1 Carbonaceous chondrites. Hofmann 1988 Hart & Zindler 1986
Primitive Mantle   Nb/Ta 17.6             Element ratios from the Primitive Mantle as given by Hofmann 1988. Gao et al. 1998 Hofmann 1988
Primitive Mantle   Nb/Ta 17.6             Selected ratios for Primitive mantle abundances averaged from various sources in an effort to compare and contrast values obtained by McDonough 1990 for spinel peridotite xenoliths and their relative associations with the composition of the Earth's Mantle. McDonough 1990 McDonough & Frey 1989
Sun & McDonough 1989
Sun 1982
Primitive Mantle 60 Nd 1327   132.7       ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: RLE Palme & O'Neill 2004
Primitive Mantle 60 Nd 1327           ppb Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004
Primitive Mantle 60 Nd 1.34           ppm Model compositions for Earth's Primitive mantle as based on analysis from McDonough & Sun 1989 (in prep). McDonough & Frey 1989 McDonough & Sun 1989
Primitive Mantle 60 Nd 1.02           ppm Model compositions for Earth's Primitive mantle as based on analysis from Anderson 1983. McDonough & Frey 1989 Anderson 1983
Primitive Mantle 60 Nd 1.067           ppm Model compositions for Earth's Primitive mantle as based on analysis from Taylor and McLennan 1985. McDonough & Frey 1989 Taylor & McLennan 1985
Primitive Mantle 60 Nd 1.19           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Hofmann 1988
Primitive Mantle 60 Nd 1.1           ppm Primitive mantle 94% Balmuccia and 6% MORB. Primitive mantle concentrations derived from correlations of Li, Na, Sc, Ti, V, Gal, Y, Zr, HREE and Hf with Al2O3 in the peridotites at 4%. Wedepohl & Hartmann 1994
Primitive Mantle 60 Nd 1.1           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Primitive Mantle 60 Nd   1.37         ppm McDonough 1991 McDonough & Frey 1989
Sun 1982
Primitive Mantle 60 Nd 1.16           ppm Model compositions for Earth's Primitive mantle as based on analysis from Hart and Zindler 1987. McDonough & Frey 1989 Hart & Zindler 1986
Primitive Mantle 60 Nd 1.39           ppm Model compositions for Earth's Primitive mantle as based on analysis from Sun 1982. McDonough & Frey 1989 Sun 1982
Primitive Mantle 60 Nd 1250   125       ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 60 Nd 1.43           ppm Model compositions for Earth's Primitive mantle as based on analysis from W¿nke et al. 1984. McDonough & Frey 1989 Wanke et al. 1984
Primitive Mantle 60 Nd 1.1892           ppm Trace element abundances in the Earth's Primitive mantle given in ppm as was first found by Hart and Zindler 1986. The major element factor of 2.51 was used to obtain the mantle values of the refractory trace elements from the abundances of C1 Carbonaceous chondrites. Hofmann 1988 Hart & Zindler 1986
Primitive Mantle 28 Ni 1960   196       ppm Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 28 Ni 0.25           wt%ox Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. McDonough & Sun 1995
Primitive Mantle 28 Ni 1990           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Primitive Mantle 28 Ni 2060           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Hofmann 1988
Primitive Mantle 28 Ni 1950           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Jagoutz et al. 1979
Primitive Mantle 28 Ni 0.27           wt%ox Pyrolite model of the silicate Earth based on the least depleted ultramafic xenolith model according to Jagoutz et al. 1979. Compositions are given in weight percent per silicate oxide. McDonough & Sun 1995 Jagoutz et al. 1979
Primitive Mantle 28 Ni 0.26           wt%ox Pyrolite model of the silicate Earth based on the MORB-harzburgite model according to Green et al. 1979. Compositions are given in weight percent per silicate oxide. McDonough & Sun 1995 Green et al. 1979
Primitive Mantle 28 Ni 0.25           wt%ox Bulk silicate Earth model based on C1 Carbonaceous Chondrite values of major element oxides as taken from Taylor and McLennan 1985. McDonough & Sun 1995 Taylor & McLennan 1985
Primitive Mantle 28 Ni 0.25           wt%ox Minor oxides of the primitive mantle (in wt.%) that comprise the remnant portions of the Earth's mantle. In this particular study the sum of the minor oxides is taken and normalized to 100% in an effort to obtain the absolute values of each element, which are then used for comparison to prior studies conducted of the Earth's mantle. Allegre et al. 1995
Primitive Mantle 28 Ni 0.25           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Taylor and McLennan 1985. McDonough & Frey 1989 Taylor & McLennan 1985
Primitive Mantle 28 Ni 0.25           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Anderson 1983. McDonough & Frey 1989 Anderson 1983
Primitive Mantle 28 Ni 0.23           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Palme and Nickel 1985. McDonough & Frey 1989 Palme & Nickel 1985
Primitive Mantle 28 Ni 0.22           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from McDonough & Sun 1989 (in prep). McDonough & Frey 1989 McDonough & Sun 1989
Primitive Mantle 28 Ni 0.24           wt%ox Estimates of major element oxide composition from the Primitive mantle as given by McDonough & Frey 1989 and Sun 1982. These values show that average Primitive mantle has roughly the same compositional values as Garnet/Spinel peridotites with some exceptions. McDonough 1990 McDonough & Frey 1989
Sun 1982
Primitive Mantle 28 Ni   0.24         wt%ox McDonough 1991 McDonough & Frey 1989
Sun 1982
Primitive Mantle 28 Ni 0.2           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Ringwood 1979. McDonough & Frey 1989 Ringwood 1979
Primitive Mantle 28 Ni 0.25           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Sun 1982. McDonough & Frey 1989 Sun 1982
Primitive Mantle 28 Ni 0.27           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from W¿nke et al. 1984. McDonough & Frey 1989 Wanke et al. 1984
Primitive Mantle 28 Ni 0.277           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Hart and Zindler 1987. McDonough & Frey 1989 Hart & Zindler 1986
Primitive Mantle 28 Ni 2080           ppm Trace element abundances in the Earth's Primitive mantle given in ppm as was first found by Hart and Zindler 1986. The major element factor of 2.51 was used to obtain the mantle values of the refractory trace elements from the abundances of C1 Carbonaceous chondrites. Hofmann 1988 Hart & Zindler 1986
Primitive Mantle 28 Ni 0.25           wt% Primitive Upper Mantle (PUM) major element compositions as measured by McDonough & Sun 1995. All mineral compositions normalized to 100%. Workman & Hart 2005 McDonough & Sun 1995
Primitive Mantle 28 Ni 0.28           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Hart & Zindler 1986
Primitive Mantle 28 Ni 1860           ppm Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004 O'Neill & Palme 1998
Primitive Mantle 28 Ni 0.27           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Jagoutz et al. 1979
Primitive Mantle 28 Ni 0.23           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Palme & Nickel 1985
Primitive Mantle 28 Ni 0.25           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 McDonough & Sun 1995
Primitive Mantle 28 Ni 0.25           wt% PRIMA (PRImitive MAntle) model of fertile upper mantle composition given by Allegre et al. 1995. Walter 2004 Allegre et al. 1995
Primitive Mantle 28 Ni 1860   93       ppm Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: versus MgO Palme & O'Neill 2004 O'Neill & Palme 1998
Primitive Mantle 28 Ni 0.23           wt% Primitive mantle model of upper mantle composition from Palme and O'Neill Treatise on Geochemistry Chapter 2.01. Walter 2004 Palme & O'Neill 2004
Primitive Mantle   Ni/Co 18             McDonough 1991
Primitive Mantle   Ni/Co 18.7             Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts.and basalts. McDonough & Sun 1995
Primitive Mantle   Ni/Co 17             Selected ratios for Primitive mantle abundances averaged from various sources in an effort to compare and contrast values obtained by McDonough 1990 for spinel peridotite xenoliths and their relative associations with the composition of the Earth's Mantle. McDonough 1990 McDonough & Frey 1989
Sun & McDonough 1989
Sun 1982
Primitive Mantle   Ni/Cr 0.72             McDonough 1991
Primitive Mantle   Ni/Cr 0.64             Selected ratios for Primitive mantle abundances averaged from various sources in an effort to compare and contrast values obtained by McDonough 1990 for spinel peridotite xenoliths and their relative associations with the composition of the Earth's Mantle. McDonough 1990 McDonough & Frey 1989
Sun & McDonough 1989
Sun 1982
Primitive Mantle   Ni/Ir 570000             McDonough 1991
Primitive Mantle   Ni/P 22             Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts.and basalts. McDonough & Sun 1995
Primitive Mantle 8 O 44.33   0.8866       wt% Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: Stoichiometry, with Fe{3+}/SFe = 0.03 Palme & O'Neill 2004 Chaussidon & Jambon 1994
Primitive Mantle 8 O 44.79           wt% Elements of the primitive mantle (PRIMA) measured in weight percent. Allegre et al. 1995
Primitive Mantle 76 Os 3.4   1.02       ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 76 Os 3.4   0.34       ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: HSE, Os/Ir = 1.07 ¿ 0.014, H-chondrite Palme & O'Neill 2004 Kallemeyn et al. 1989
Primitive Mantle 15 P 0.02           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Ringwood 1979. McDonough & Frey 1989 Ringwood 1979
Primitive Mantle 15 P 60           ppm Primitive mantle 94% Balmuccia and 6% MORB. Wedepohl & Hartmann 1994
Primitive Mantle 15 P 0.021           wt%ox Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. McDonough & Sun 1995
Primitive Mantle 15 P 90   13.5       ppm Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 15 P 0.022           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from McDonough & Sun 1989 (in prep). McDonough & Frey 1989 McDonough & Sun 1989
Primitive Mantle 15 P 0.013           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Anderson 1983. McDonough & Frey 1989 Anderson 1983
Primitive Mantle 15 P 58           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Primitive Mantle 15 P 0.015           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from W¿nke et al. 1984. McDonough & Frey 1989 Wanke et al. 1984
Primitive Mantle 15 P 0.022           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Sun 1982. McDonough & Frey 1989 Sun 1982
Primitive Mantle 15 P 83           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Hart & Zindler 1986
Primitive Mantle 15 P   0.022         wt%ox McDonough 1991 McDonough & Frey 1989
Sun 1982
Primitive Mantle 15 P 0.022           wt%ox Estimates of major element oxide composition from the Primitive mantle as given by McDonough & Frey 1989 and Sun 1982. These values show that average Primitive mantle has roughly the same compositional values as Garnet/Spinel peridotites with some exceptions. McDonough 1990 McDonough & Frey 1989
Sun 1982
Primitive Mantle 15 P 0.021           wt% Primitive Upper Mantle (PUM) major element compositions as measured by McDonough & Sun 1995. All mineral compositions normalized to 100%. Workman & Hart 2005 McDonough & Sun 1995
Primitive Mantle 15 P 0.019           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Hart and Zindler 1987. McDonough & Frey 1989 Hart & Zindler 1986
Primitive Mantle 15 P 86   12.9       ppm Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: P/Nd = 65 ¿ 10 Palme & O'Neill 2004 McDonough et al. 1985
Langmuir et al. 1992
Primitive Mantle 15 P 0.02             Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 McDonough & Sun 1995
Primitive Mantle 15 P 0.02           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Hart & Zindler 1986
Primitive Mantle 82 Pb 185           ppb Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004 Galer & Goldstein 1996
Primitive Mantle 82 Pb 150   30       ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 82 Pb 0.175           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Hofmann 1988
Primitive Mantle 82 Pb 185   18.5       ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: 238U/204Pb = 8.5 ¿ 0.5, 206/204 = 18, 207/204 = 15.5, 208/204 = 38 Palme & O'Neill 2004 Galer & Goldstein 1996
Primitive Mantle 82 Pb 0.175           ppm Trace element abundances in the Earth's Primitive mantle given in ppm as was first found by Hart and Zindler 1986. The major element factor of 2.51 was used to obtain the mantle values of the refractory trace elements from the abundances of C1 Carbonaceous chondrites. Hofmann 1988 Hart & Zindler 1986
Primitive Mantle 46 Pd 3.9   3.12       ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 46 Pd 3.27   0.4905       ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: HSE, Pd/Ir = 1.022 ¿ 0.097, H-chondrite Palme & O'Neill 2004 Morgan et al. 1985
Primitive Mantle 59 Pr 0.274           ppm Model compositions for Earth's Primitive mantle as based on analysis from McDonough & Sun 1989 (in prep). McDonough & Frey 1989 McDonough & Sun 1989
Primitive Mantle 59 Pr 0.283           ppm Model compositions for Earth's Primitive mantle as based on analysis from Sun 1982. McDonough & Frey 1989 Sun 1982
Primitive Mantle 59 Pr 0.237           ppm Model compositions for Earth's Primitive mantle as based on analysis from Hart and Zindler 1987. McDonough & Frey 1989 Hart & Zindler 1986
Primitive Mantle 59 Pr 0.2419           ppm Trace element abundances in the Earth's Primitive mantle given in ppm as was first found by Hart and Zindler 1986. The major element factor of 2.51 was used to obtain the mantle values of the refractory trace elements from the abundances of C1 Carbonaceous chondrites. Hofmann 1988 Hart & Zindler 1986
Primitive Mantle 59 Pr 0.206           ppm Model compositions for Earth's Primitive mantle as based on analysis from Taylor and McLennan 1985. McDonough & Frey 1989 Taylor & McLennan 1985
Primitive Mantle 59 Pr 254   25.4       ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 59 Pr 270   40.5       ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: RLE Palme & O'Neill 2004
Primitive Mantle 59 Pr 270           ppb Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004
Primitive Mantle 78 Pt 6.6   0.792       ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: HSE, Pt/Ir, CI-chondrite Palme & O'Neill 2004
Primitive Mantle 78 Pt 7.1   2.13       ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 37 Rb 0.535           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Hofmann 1988
Primitive Mantle 37 Rb 0.73           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Jagoutz et al. 1979
Primitive Mantle 37 Rb 0.65           ppm Concentration of the Primitive mantle as given by McDonough & Frey 1989 and Sun 1982. Values given are placed next to average concentrations of Continental lithospheric mantle in an effort to calculate the proportional contribution to the Primitive mantle. This calculation assumes that the Continental lithospheric mantle is 1.45% the mass of the Primitive mantle. McDonough 1990 McDonough & Frey 1989
Sun 1982
Primitive Mantle 37 Rb 0.68           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Sun & Nesbitt 1977
Primitive Mantle 37 Rb 0.73           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Smith 1977
Primitive Mantle 37 Rb 0.85           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Ringwood & Kesson 1977
Primitive Mantle 37 Rb 0.86           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Ganapathy & Anders 1974
Primitive Mantle 37 Rb 0.59           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Shaw 1972
Primitive Mantle 37 Rb 0.62           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Larimer 1971
Primitive Mantle 37 Rb 0.5353           ppm Trace element abundances in the Earth's Primitive mantle given in ppm as was first found by Hart and Zindler 1986. The major element factor of 2.51 was used to obtain the mantle values of the refractory trace elements from the abundances of C1 Carbonaceous chondrites. Hofmann 1988 Hart & Zindler 1986
Primitive Mantle 37 Rb 251             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone.  Hofmann & White 1983 Palme et al. 1981
Primitive Mantle 37 Rb 2.06           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone.  Hofmann & White 1983 Palme et al. 1981
Primitive Mantle 37 Rb 0.61           ppm Abundances for K, Rb, Cs and Ba according to analysis performed by Hofmann and White 1983.  Abundance values found to be in agreement with published values for these same elements, aside from Cs, which was far from previously published data. Hofmann & White 1983
Primitive Mantle 37 Rb 1.5           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Primitive Mantle 37 Rb 0.605           ppm Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004 Hofmann & White 1983
Primitive Mantle 37 Rb 0.6   0.18       ppm Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 37 Rb 0.605   0.0605       ppm Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: Rb/Sr = 0.029 ¿ .002 (Sr isotopes), Rb/Ba = 0.09 ¿ 0.02 Palme & O'Neill 2004 Hofmann & White 1983
Primitive Mantle 37 Rb 0.81           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Jagoutz et al. 1979
Primitive Mantle 37 Rb 0.63           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Jacobsen & Wasserburg 1979
Primitive Mantle 37 Rb 0.66           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Sun 1982
Primitive Mantle 37 Rb 350             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Sun 1982
Primitive Mantle   Rb/Cs 20             Element ratios from the Primitive Mantle as given by Hofmann 1988. Gao et al. 1998 Hofmann 1988
Primitive Mantle   Rb/Sr 0.025             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Smith 1977
Primitive Mantle   Rb/Sr 0.029             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Jacobsen & Wasserburg 1979
Primitive Mantle   Rb/Sr 0.032             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Ganapathy & Anders 1974
Primitive Mantle   Rb/Sr 0.029             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Jagoutz et al. 1979
Primitive Mantle   Rb/Sr 0.03             Element ratios from the Primitive Mantle as given by Hofmann 1988. Gao et al. 1998 Hofmann 1988
Primitive Mantle   Rb/Sr 0.03             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Sun & Nesbitt 1977
Primitive Mantle   Rb/Sr 0.022             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Shaw 1972
Primitive Mantle   Rb/Sr 0.029             Abundances for K, Rb, Cs and Ba according to analysis performed by Hofmann and White 1983.  Abundance values found to be in agreement with published values for these same elements, aside from Cs, which was far from previously published data.  Hofmann & White 1983
Primitive Mantle   Rb/Sr 0.035             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Ringwood & Kesson 1977
Primitive Mantle   Rb/Sr 0.035             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Larimer 1971
Primitive Mantle   Rb/Sr 0.24             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone.  Hofmann & White 1983 Palme et al. 1981
Primitive Mantle 75 Re 0.32           ppb Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004 Walker et al. 2002
Primitive Mantle 75 Re 0.32   0.032       ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: Re/Os = 0.0874 ¿ 0.0027, H-chondrite Palme & O'Neill 2004 Walker et al. 2002
Primitive Mantle 75 Re 0.28   0.084       ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 45 Rh 0.9   0.36       ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 45 Rh 0.93   0.0465       ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: HSE, Rh/Ir = CI-chondrite Palme & O'Neill 2004
Primitive Mantle 44 Ru 5   1.5       ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 44 Ru 4.55   0.182       ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: HSE, Ru/Ir = CI-chondrite Palme & O'Neill 2004
Primitive Mantle 16 S 251           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Primitive Mantle 16 S 200           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Morgan et al. 1986
Primitive Mantle 16 S 200   80       ppm Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: versus MgO, komatiites Palme & O'Neill 2004 O'Niell 1991
Primitive Mantle 16 S 250   50       ppm Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 16 S 262           ppm Primitive mantle 94% Balmuccia and 6% MORB. Wedepohl & Hartmann 1994
Primitive Mantle 51 Sb 5.5   2.75       ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 51 Sb 12           ppb Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004 Jochum & Hofmann 1997
Primitive Mantle 51 Sb 12           ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: Sb/Pb = 0.074 ¿ 0.031, Sb/Pr = 0.02 in mantle, 0.05 in crust. Standard deviations are uncertain and greater than 50%. Palme & O'Neill 2004 Jochum & Hofmann 1997
Primitive Mantle 21 Sc 16.5           ppm Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004
Primitive Mantle 21 Sc 17           ppm Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Jagoutz et al. 1979
Primitive Mantle 21 Sc 19           ppm Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Palme & Nickel 1985
Primitive Mantle 21 Sc 16           ppm Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 McDonough & Sun 1995
Primitive Mantle 21 Sc 16.5   1.65       ppm Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: RLE Palme & O'Neill 2004
Primitive Mantle 21 Sc 16.9           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Jagoutz et al. 1979
Primitive Mantle 21 Sc 14.9           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Morgan et al. 1986
Primitive Mantle 21 Sc 18           ppm Primitive mantle 94% Balmuccia and 6% MORB. Primitive mantle concentrations derived from correlations of Li, Na, Sc, Ti, V, Gal, Y, Zr, HREE and Hf with Al2O3 in the peridotites at 4%. Wedepohl & Hartmann 1994
Primitive Mantle 21 Sc 16.2   1.62       ppm Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 21 Sc 17.1           ppm Model compositions for Earth's Primitive mantle as based on analysis from McDonough & Sun 1989 (in prep). McDonough & Frey 1989 McDonough & Sun 1989
Primitive Mantle 21 Sc 13           ppm Model compositions for Earth's Primitive mantle as based on analysis from Taylor and McLennan 1985. McDonough & Frey 1989 Taylor & McLennan 1985
Primitive Mantle 21 Sc 15           ppm Model compositions for Earth's Primitive mantle as based on analysis from Anderson 1983. McDonough & Frey 1989 Anderson 1983
Primitive Mantle 21 Sc 19           ppm Model compositions for Earth's Primitive mantle as based on analysis from Palme and Nickel 1985. McDonough & Frey 1989 Palme & Nickel 1985
Primitive Mantle 21 Sc 16.1           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Primitive Mantle 21 Sc 17           ppm Model compositions for Earth's Primitive mantle as based on analysis from W¿nke et al. 1984. McDonough & Frey 1989 Wanke et al. 1984
Primitive Mantle 21 Sc 14.8           ppm Model compositions for Earth's Primitive mantle as based on analysis from Hart and Zindler 1987. McDonough & Frey 1989 Hart & Zindler 1986
Primitive Mantle 21 Sc 14.88           ppm Trace element abundances in the Earth's Primitive mantle given in ppm as was first found by Hart and Zindler 1986. The major element factor of 2.51 was used to obtain the mantle values of the refractory trace elements from the abundances of C1 Carbonaceous chondrites. Hofmann 1988 Hart & Zindler 1986
Primitive Mantle 21 Sc   17.3         ppm McDonough 1991 McDonough & Frey 1989
Sun 1982
Primitive Mantle 21 Sc 17           ppm Model compositions for Earth's Primitive mantle as based on analysis from Sun 1982. McDonough & Frey 1989 Sun 1982
Primitive Mantle 34 Se 0.075   0.0525       ppm Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 34 Se 79           ppb Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004 Palme & Jones 2003
Primitive Mantle 34 Se 0.079           ppm Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: Se/S = 2528, chondritic. Standard deviations are uncertain and greater than 50%. Palme & O'Neill 2004 Palme & Jones 2003
Primitive Mantle 14 Si 47.95           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Anderson 1983. McDonough & Frey 1989 Anderson 1983
Primitive Mantle 14 Si 46.2           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from Palme and Nickel 1985. McDonough & Frey 1989 Palme & Nickel 1985
Primitive Mantle 14 Si 44.8           wt%ox Model compositions for Earth's Primitive mantle as based on analysis from McDonough & Sun 1989 (in prep). McDonough & Frey 1989 McDonough & Sun 1989
Primitive Mantle 14 Si 21   2.1       wt% Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 14 Si 45           wt%ox Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. McDonough & Sun 1995
Primitive Mantle 14 Si 45.4   0.3       wt% Major element composition of the Earth Primitive Mantle, measurements by Palme & O'Neill 2004. Palme & O'Neill 2004
Primitive Mantle 14 Si 45.96           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Hart & Zindler 1986
Primitive Mantle 14 Si 21.22           wt% Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004 O'Neill & Palme 1998
Primitive Mantle 14 Si 45.1           wt% Estimates of major element composition of the Earth Primitive Mantle from Ringwood 1979. Palme & O'Neill 2004 Ringwood 1979
Primitive Mantle 14 Si 45.1           wt% Estimates of major element composition of the Earth Primitive Mantle from Jagoutz et al. 1979. Palme & O'Neill 2004 Jagoutz et al. 1979
Primitive Mantle 14 Si 45.6           wt% Estimates of major element composition of the Earth Primitive Mantle from Wanke et al. 1984. Palme & O'Neill 2004 Wanke et al. 1984
Primitive Mantle 14 Si 46.2           wt% Estimates of major element composition of the Earth Primitive Mantle from Palme & Nickel 1985. Palme & O'Neill 2004 Palme & Nickel 1985
Primitive Mantle 14 Si 46           wt% Estimates of major element composition of the Earth Primitive Mantle from Hart & Zindler 1986. Palme & O'Neill 2004 Hart & Zindler 1986
Primitive Mantle 14 Si 45           wt% Estimates of major element composition of the Earth Primitive Mantle from McDonough & Sun 1995. Palme & O'Neill 2004 McDonough & Sun 1995
Primitive Mantle 14 Si 45.14           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Jagoutz et al. 1979
Primitive Mantle 14 Si 46.2           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 Palme & Nickel 1985
Primitive Mantle 14 Si 44.92           wt% Major and minor element compositional averages in Primitive upper mantle models. Pearson et al. 2004 McDonough & Sun 1995
Primitive Mantle 14 Si 46.12           wt% Estimates of major element composition of the Earth Primitive Mantle from Allegre et al. 1995.