GERM Reservoir Database
Development and Maintenance by the EarthRef.org Database Team

GERM Database Search Results        
Reservoir Z Element Value Median SD Low High N Unit Info Reference Source(s)
A La Baleine River   87Sr/86Sr 0.7265             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
A La Baleine River 38 Sr 0.16             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Active Continental Rifts 38 Sr 327           ppm Lower crustal rocks are combined in proportions as indicated in Figure 2. Average compositions were calculated using mafic granulitic xenoliths since these xenoliths are believed to represent the lowermost continental crust. Rudnick & Fountain 1995
Active Continental Rifts 38 Sr 332           ppm Rudnick & Fountain 1995
Alaska Trench   87Sr/86Sr 0.70588             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 3 or moderate. Plank & Langmuir 1998
Alaska Trench 38 Sr 289           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 3 or moderate. Plank & Langmuir 1998
Albany River   87Sr/86Sr 0.7158             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Albany River 38 Sr 0.32             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Alborz Mountains 38 Sr 90         3 ppm Phosphorite sandstones, quartzose and ferruginous, in sequence of phosphatic black shales, sandstones and limestones, platform setting, P2O5: 24-28% from the Alborz Mountains, Iran. Detection Limit = 2 ppm. Altschuller 1980 Aval et al. 1968
Aleutian Basalts   87Sr/86Sr 0.70315         19   Average major and trace element values for Aleutian Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Aleutian Basalts 38 Sr 445.09         23 ppm Average major and trace element values for Aleutian Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Aleutian Trench   87Sr/86Sr 0.70635             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Aleutian Trench 38 Sr 245           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
ALH 77005 Meteorite 38 Sr 14   3       ppm Mars elemental abundances as given by ALH77005 meteorite, which is a lherzolitic shergottite, as given in Lodders 1988. McSween, Jr. 2004 Lodders 1998
ALH 84001 Meteorite 38 Sr 4.5           ppm Mars elemental abundances as given by ALH84001 meteorite, which is an orthopyroxenite, as given in Lodders 1988. McSween, Jr. 2004 Lodders 1998
Allende Meteorite 38 Sr 12           wt%ox Bulk meteorite composition values are from an unpublished reference by E. Jarosewich. Martin & Mason 1974
Amazon River   87Sr/86Sr 0.7109             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Amazon River 38 Sr 0.32             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Amazon River Particulates 38 Sr 309           µg/g Elemental particulates in major South American rivers. Averages for major elements are weighted according to the suspended load prior to the construction of dams, for trace elements the average contents are mean values. Martin & Meybeck 1979
Amphibolites 38 Sr 258         189 ppm Average of 165 subsamples and 24 composites. Gao et al. 1998
Andaman Trench   87Sr/86Sr 0.73128             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 4 or low. Plank & Langmuir 1998
Andaman Trench 38 Sr 338           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 4 or low. Plank & Langmuir 1998
Andean Andesites   Rb/Sr 0.11             Elemental ratios of the post Archaean Middle and Lower continental crust which is found to be that of an average continental margin orogenic andesite. Weaver & Tarney 1984 Bailey 1981
Andean Andesites 38 Sr 601           ppm Minor element values of the post Archaean Middle and Lower continental crust as estimated by Bailey 1981. The composition of the crust itself is found to be that of an average continental margin orogenic andesite. The trace element data are from the analyses of Bailey pertaining to Andean Andesite. Weaver & Tarney 1984 Bailey 1981
Andes Basalt   87Sr/86Sr 0.70515         11   Average major and trace element values for Andean Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Andes Basalt 38 Sr 532.34         28 ppm Average major and trace element values for Andean Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Andesites   87Sr/86Sr 0.70595         50   Average values of Aleutian Andeiste isotopic ratios taken from Plank and Langmuir 1988. Andesite was used in this case to correct for the ash layer which was omitted from sampling of the upper unit of the Aleutian trench. Plank & Langmuir 1998 Plank & Langmuir 1988
Andesites   87Sr/86Sr 0.70291         13   Average major and trace element values from Primitive Aleutian Arc Andesites given by Kelemen et al. 2004. All major element oxide values are given in wt. % and trace elements in ppm. Kelemen et al. 2004
Andesites 38 Sr 290           ppm Condie 1993
Andesites 38 Sr 253           ppm Condie 1993
Andesites 38 Sr 259           ppm Condie 1993
Andesites 38 Sr 360           ppm Condie 1993
Andesites 38 Sr 320           ppm Condie 1993
Andesites 38 Sr 312           ppm Condie 1993
Andesites 38 Sr 315           ppm Condie 1993
Andesites 38 Sr 1035.88         27 ppm Average major and trace element values from Primitive Aleutian Arc Andesites given by Kelemen et al. 2004. All major element oxide values are given in wt. % and trace elements in ppm. Kelemen et al. 2004
Andesites 38 Sr 447         50 ppm Average Aleutian Andeiste major and minor element composition taken from Plank and Langmuir 1988. Andesite was used in this case to correct for the ash layer which was omitted from sampling of the upper unit of the Aleutian trench. Plank & Langmuir 1998 Plank & Langmuir 1988
Angrite Angra Dos Reis 38 Sr 130           µg/g Trace element compositional data on Angra dos Reis Angrite. Mittlefehldt 2004 Mittlefehldt & Lindstrom 1990
Angrite LEW 87051 38 Sr 67           µg/g Trace element compositional data on Angrite LEW 87051. Mittlefehldt 2004 Mittlefehldt & Lindstrom 1990
Archean Amphibolites   Rb/Sr 0.128             Middle crust compositon based on Weaver and Tarney 1981. According to this study the middle crustal composition is that of Archean Lewisian amphibolite facies gneisses. Weaver & Tarney 1984 Weaver & Tarney 1981
Archean Amphibolites 38 Sr 580           ppm Middle crust compositon based on Weaver and Tarney 1981. According to this study the middle crustal composition is that of Archean Lewisian amphibolite facies gneisses. Weaver & Tarney 1984 Weaver & Tarney 1981
Archean Canadian Shield 38 Sr 300           ppm Major and minor element composition of the Upper Continental Crust as given by Taylor and McLennan 1981. Shaw et al. 1986 Taylor & McLennan 1981
Archean Canadian Shield 38 Sr 410           ppm Major and minor element composition of the Upper Continental Crust as given by Eade and Fahrig 1971. Shaw et al. 1986 Eade & Fahrig 1971
Archean Lower Crust 38 Sr 569           ppm Archean Lower Continental Crust composition as offered by Weaver and Tarney 1984. Also one of many models of LCC composition to compare current analyses, yet gives a good lower marker for some of the major and minor consitutents of LCC. Shaw et al. 1986 Weaver & Tarney 1984
Archean Terrains 38 Sr 215           ppm Taylor & McLennan 1995
Archean Terrains 38 Sr 240           ppm Taylor & McLennan 1995
Archean Terrains 38 Sr 376           ppm Major and minor element composition of the Upper Continental Crust as given by Shaw et al. 1967. Shaw et al. 1986 Shaw et al. 1967
Archean Terrains 38 Sr 317           ppm Rudnick & Fountain 1995
Arenaceous Rocks 38 Sr 133         2754 ppm Average of 2628 subsamples and 126 composites. Gao et al. 1998
Arenaceous Rocks 38 Sr 140         121 ppm Average of 110 subsamples and 11 composites. Gao et al. 1998
Arnaud River   87Sr/86Sr 0.7264             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Arnaud River 38 Sr 0.091             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Ashy Clay 38 Sr 354         4 ppm Average of 4 ashy clays after Peate et al. (1997) that have been diluted by the percentages of pure SiO2 and CaCO3 in the drill cores. The biogenic diluent is minor at 1.7% pure silica and 2.5% CaCO3 in this 85 m deep unit. Plank & Langmuir 1998
Attawapiskat River   87Sr/86Sr 0.714             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Attawapiskat River 38 Sr 0.297             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Australian Granite   Eu/Sr 0.0051         13   Analysis of Himalayan Leucogranite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Inger & Harris 1993
Australian Granite   Eu/Sr 0.0614         6   Analysis of A-type Padthaway Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Turner et al. 1992
Australian Granite   Eu/Sr 0.0254             Analysis of A-type Lachlan Fold Belt Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Collins et al. 1982
Australian Granite   Eu/Sr 0.0035         8   Analysis of Oceanic Arc Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Whalen 1985
Australian Granite   Rb/Sr 1.84         13   Analysis of Himalayan Leucogranite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Inger & Harris 1993
Australian Granite   Rb/Sr 0.07         8   Analysis of Oceanic Arc Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Whalen 1985
Australian Granite   Rb/Sr 2.19         704   Analysis of Lachlan Fold Belt Cordierite Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Chappell & White 1992
Australian Granite   Rb/Sr 0.7         1074   Analysis of Lachlan Fold Belt Hornblende Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Wormald & Price 1988
Australian Granite   Rb/Sr 1.67             Analysis of A-type Lachlan Fold Belt Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Collins et al. 1982
Australian Granite   Rb/Sr 19.55         6   Analysis of A-type Padthaway Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Turner et al. 1992
Australian Granite 38 Sr 267         8 ppm Analysis of Oceanic Arc Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Whalen 1985
Australian Granite 38 Sr 112         704 ppm Analysis of Lachlan Fold Belt Cordierite Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Chappell & White 1992
Australian Granite 38 Sr 124         13 ppm Analysis of Himalayan Leucogranite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Inger & Harris 1993
Australian Granite 38 Sr 235         1074 ppm Analysis of Lachlan Fold Belt Hornblende Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Wormald & Price 1988
Australian Granite 38 Sr 7         6 ppm Analysis of A-type Padthaway Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Turner et al. 1992
Australian Granite 38 Sr 95           ppm Analysis of A-type Lachlan Fold Belt Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Collins et al. 1982
Australian Granite   Sr/Nd 1.48             Analysis of A-type Lachlan Fold Belt Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Collins et al. 1982
Australian Granite   Sr/Nd 0.06         6   Analysis of A-type Padthaway Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Turner et al. 1992
Australian Granite   Sr/Nd 9.91         1074   Analysis of Lachlan Fold Belt Hornblende Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Wormald & Price 1988
Australian Granite   Sr/Nd 23.73         8   Analysis of Oceanic Arc Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Whalen 1985
Australian Granite   Sr/Nd 11.48         13   Analysis of Himalayan Leucogranite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Inger & Harris 1993
Australian Granite   Sr/Nd 5.11         704   Analysis of Lachlan Fold Belt Cordierite Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Chappell & White 1992
Aux Feuilles River   87Sr/86Sr 0.7347             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Aux Feuilles River 38 Sr 0.114             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Aux Outardes River   87Sr/86Sr 0.7186             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Aux Outardes River 38 Sr 0.103             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Avon River   87Sr/86Sr 0.7326             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
Avon River 38 Sr 33.554             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
Back River   87Sr/86Sr 0.7291             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Back River 38 Sr 0.091             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Baldissero Spinel Lherzolites 38 Sr 1   0.6     14 ppm Elements analyzed from Baldissero section of Ivrea Complex in Northern Italy. Minor and trace elements analyzed by AAS, INAA, RFA, ICP-AES, ICP-MS, Isotope dilution, Electrometry or Coulometry. Accuracy of all methods checked by USGS reference rocks. Wedepohl & Hartmann 1994
Balmuccia Spinel Lherzolites 38 Sr 3.5   2.6     18 ppm Elements analyzed from Balmuccia section of the Ivrea Complex in Northern Italy. Minor and trace elements analyzed by AAS, INAA, RFA, ICP-AES, ICP-MS, Isotope dilution, Electrometry or Coulometry. Accuracy of all methods checked by USGS reference rocks. Wedepohl & Hartmann 1994
Bambui Group 38 Sr 300         14 ppm Silty and clayey pelletal phosphorites located in the intra-cratonic basin Bambui group Minas Geraes in Brazil. Detection Limit = 2 ppm. Altschuller 1980 Cathcart 1974
Basalts   87Sr/86Sr 0.7068         27   Average major and trace element compositions for Western U.S. Sierra Nevada Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Farmer et al. 2002
Basalts   87Sr/86Sr 0.7042         7   Average major and trace element values for SE Australian Dubbo V.F. Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Zhang & O'Reilly 1997
Basalts   87Sr/86Sr 0.7038         4   Average major and trace element values for NE China Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Chung 1999
Basalts   87Sr/86Sr 0.7062         10   Average major and trace element compositions for Aegean Sea Dodecanese V.F. Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Robert et al. 1992
Basalts   87Sr/86Sr 0.7054         7   Average major and trace element values for SE Australian Newer V.P. Tholeiitic Basalts as well as selected elemental and isotopic ratios. Farmer 2004 Price et al. 1997
Basalts   87Sr/86Sr 0.7035         25   Average major and trace element values for Arabian Peninsula in Yemen Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Baker et al. 1997
Basalts   87Sr/86Sr 0.7046         8   Average major and trace element values for Vietnamese Tholeiitic Basalts as well as selected elemental and isotopic ratios. Farmer 2004 Hoang & Flower 1998
Basalts   87Sr/86Sr 0.7043         3   Average major and trace element values for Taos Plateau, Rio Grande Rift Tholeiitic Basalts as well as selected elemental and isotopic ratios. Farmer 2004 Dungan et al. 1986
Basalts   87Sr/86Sr 0.7041         19   Average major and trace element values for N. Tanzania-East African Rift Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Paslick et al. 1995
Basalts   87Sr/86Sr 0.7033         8   Average major and trace element values for West African (Cameroon Line) Low Sr Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Marzoli et al. 2000
Basalts   87Sr/86Sr 0.7069         7   Average major and trace element compositions for African Virunga V.F. High Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Rogers et al. 1998
Basalts   87Sr/86Sr 0.7035         6   Average major and trace element values for West African (Cameroon Line) High Sr Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Marzoli et al. 2000
Basalts   87Sr/86Sr 0.7081         1   Average major and trace element compositions for Chinese Tibetan Plateau Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Turner et al. 1996a
Basalts   87Sr/86Sr 0.7047         3   Average major and trace element values for Central Anatolian (Turkey) Early Miocene continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Wilson et al. 1997
Basalts   87Sr/86Sr 0.7055         10   Average major and trace element compositions for Taiwanese Mt. Tsaoling Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Chung et al. 2001
Basalts   87Sr/86Sr 0.7034         1   Average major and trace element values for Central Anatolian (Turkey) Late Miocene continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Wilson et al. 1997
Basalts   87Sr/86Sr 0.71007             Average major and trace element compositions for Italian Roman V.F. Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Peccerillo 1999
Basalts   87Sr/86Sr 0.7036         26   Average major and trace element values for European Rhine Graben Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Jung & Hoernes 2000
Basalts   87Sr/86Sr 0.7036         3   Average major and trace element values for Taiwanese Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Chung et al. 1995
Basalts 38 Sr 644         44 ppm Average major and trace element values for Arabian Peninsula in Yemen Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Baker et al. 1997
Basalts 38 Sr 765         8 ppm Average major and trace element values for SE Australian Dubbo V.F. Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Zhang & O'Reilly 1997
Basalts 38 Sr 1469         7 ppm Average major and trace element compositions for Italian Roman V.F. Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Conticelli et al. 1997
Basalts 38 Sr 730         5 ppm Average major and trace element values for Central Anatolian (Turkey) Late Miocene continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Wilson et al. 1997
Basalts 38 Sr 132           ppm Condie 1993
Basalts 38 Sr 150           ppm Condie 1993
Basalts 38 Sr 222           ppm Condie 1993
Basalts 38 Sr 236           ppm Condie 1993
Basalts 38 Sr 240           ppm Condie 1993
Basalts 38 Sr 260           ppm Condie 1993
Basalts 38 Sr 280           ppm Condie 1993
Basalts 38 Sr 926         16 ppm Average major and trace element values for European Rhine Graben Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Jung & Hoernes 2000
Basalts 38 Sr 676         10 ppm Average major and trace element compositions for Taiwanese Mt. Tsaoling Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Chung et al. 2001
Basalts 38 Sr 927         3 ppm Average major and trace element values for Central Anatolian (Turkey) Early Miocene continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Wilson et al. 1997
Basalts 38 Sr 3216         6 ppm Average major and trace element compositions for Chinese Tibetan Plateau Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Turner et al. 1996a
Basalts 38 Sr 1470         6 ppm Average major and trace element values for West African (Cameroon Line) High Sr Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Marzoli et al. 2000
Basalts 38 Sr 959         8 ppm Average major and trace element values for West African (Cameroon Line) Low Sr Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Marzoli et al. 2000
Basalts 38 Sr 993         16 ppm Average major and trace element compositions for African Virunga V.F. High Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Rogers et al. 1998
Basalts 38 Sr 436         7 ppm Average major and trace element values for SE Australian Newer V.P. Tholeiitic Basalts as well as selected elemental and isotopic ratios. Farmer 2004 Price et al. 1997
Basalts 38 Sr 886         23 ppm Average major and trace element values for N. Tanzania-East African Rift Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Paslick et al. 1995
Basalts 38 Sr 2223         27 ppm Average major and trace element compositions for Western U.S. Sierra Nevada Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Farmer et al. 2002
Basalts 38 Sr 881         3 ppm Average major and trace element values for Taiwanese Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Chung et al. 1995
Basalts 38 Sr 329         12 ppm Average major and trace element values for Taos Plateau, Rio Grande Rift Tholeiitic Basalts as well as selected elemental and isotopic ratios. Farmer 2004 Dungan et al. 1986
Basalts 38 Sr 740         9 ppm Average major and trace element values for Vietnamese Tholeiitic Basalts as well as selected elemental and isotopic ratios. Farmer 2004 Hoang & Flower 1998
Basalts 38 Sr 915         4 ppm Average major and trace element values for NE China Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Chung 1999
Basalts 38 Sr 1014         13 ppm Average major and trace element compositions for Aegean Sea Dodecanese V.F. Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Robert et al. 1992
Basic Precambrian Granulites 38 Sr 223         25 ppm Shaw et al. 1986
Battle Creek Formation 38 Sr 745         17 ppm Cherty and calcareous pelletal phosphorites, located in the intra-cratonic basin Battle Cratonic Formation (Georgina Basin), P2O5: 8-37% (mostly 24-37%). Detection Limit = 2 ppm. Altschuller 1980 De Keyser & Cook 1972
Battle Creek Formation 38 Sr 100         7 ppm Silty aphanitic phosphorites of the intra-cratonic Georgina Basin; Battle formation of Australia. Detection Limit = 2 ppm. Altschuller 1980 De Keyser & Cook 1972
Belkinsk Akai Sayan 38 Sr 300         33 ppm Calcareous phosphorites from the Altai-Sayan geosyncline Belkinsk Altai Sayan, Siberia. Detection Limit = 2 ppm. Altschuller 1980 Chaikina & Nikolskaya 1970
Binda Eucrite 38 Sr 33           µg/g Trace element compositional data on Binda Eucrite. Mittlefehldt 2004 Barrat et al. 2000
McCarthy et al. 1973
Blue Nile River   87Sr/86Sr 0.7056             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Blue Nile River 38 Sr 1.55             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Bone Valley Formation 38 Sr 1400         8 ppm Pebbly and pelletal phosphorite from sandy and clayey phosphorites reworked from phosphatic limestones and dolomites of the Hawthorn carbonate platform (Bone Valley Formation, Florida, U.S.A.); average eight composites: four pebble and four pellet concentrates composited from one week's production at each of four mining localities in Land Pebble Field, representative of approximately 100,000 tons, P2O5: 30-35%. Detection Limit = 2 ppm. Altschuller 1980
Boninites   87Sr/86Sr 0.70423         55   Average major and trace element values from Primitive Arc Boninites (High-Mg Andesites) given by Kelemen et al. 2004. All major element oxide values are given in wt. % and trace elements in ppm. Kelemen et al. 2004
Boninites 38 Sr 141.84         77 ppm Average major and trace element values from Primitive Arc Boninites (High-Mg Andesites) given by Kelemen et al. 2004. All major element oxide values are given in wt. % and trace elements in ppm. Kelemen et al. 2004
Brahmaputra River   87Sr/86Sr 0.721             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Brahmaputra River 38 Sr 0.93             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Brazos River   87Sr/86Sr 0.7087             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Brass 1976
Brazos River 38 Sr 6.418             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Brass 1976
Brown Clay 38 Sr 317         29 ppm The brown clay analyses where averaged over 10 m intervals and then averaged down-unit. Plank & Langmuir 1998
Brown Clay 38 Sr 216         4 ppm Average of 4 brown clays using DCP analyses. Plank & Langmuir 1998
Brown Rock 38 Sr 570         3 ppm Residually concentrated pelletal phosphorite from 'Brown Rock' Tennessee, U.S.A. Ordovician carbonate platform, decalcified during late Tertiary to Recent, P2O5 = 11, 27, 29%, samples include one production composite. Detection Limit = 2 ppm. Altschuller 1980
Carbonate   87Sr/86Sr 0.70858         13   The average Ca-carbonate in this unit is 80% based on Leg 67 shipboard carbonate bomb analyses. The analyses have been adjusted accordingly for 45% CaO. Plank & Langmuir 1998
Carbonate 38 Sr 1504         13 ppm The average Ca-carbonate in this unit is 80% based on Leg 67 shipboard carbonate bomb analyses. The analyses have been adjusted accordingly for 45% CaO. Plank & Langmuir 1998
Carbonate Turbidites 38 Sr 1285         87 ppm Average of 87 Cenozoic carbonate turbidites in 100 m of the total of 500 m ODP section. Plank & Langmuir 1998
Carbonates 38 Sr 218         50 ppm Average of 45 subsamples and 5 composites. Gao et al. 1998
Carbonates 38 Sr 245         2038 ppm Average of 1922 subsamples and 116 composites. Gao et al. 1998
Carbonates 38 Sr 55   0.38     162 ppm Average bulk chemical composition of the Albanel carbonates as determined from trace elements in ppm. Mean values and standard deviations determined by X-Ray Fluoresence Specrometry (XRF) approximating a sandy and/or cherty dolostone. Mirota & Veizer 1994
Cascade Basalt   87Sr/86Sr 0.70382         27   Average major and trace element values for Cascades Arc Basalt given in weight percent and parts per million respectively. Kelemen et al. 2004
Cascade Basalt 38 Sr 469.38         24 ppm Average major and trace element values for Cascades Arc Basalt given in weight percent and parts per million respectively. Kelemen et al. 2004
Cascadia Trench   87Sr/86Sr 0.7071             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 4 or low. Plank & Langmuir 1998
Cascadia Trench 38 Sr 216           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 4 or low. Plank & Langmuir 1998
Cauveri River   87Sr/86Sr 0.713             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Brass 1976
Cauveri River 38 Sr 3.62             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Brass 1976
Central America Trench   87Sr/86Sr 0.70852             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Central America Trench 38 Sr 1227           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Central American Basalts   87Sr/86Sr 0.70388         25   Average major and trace element values for Central American Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Central American Basalts 38 Sr 437.96         29 ppm Average major and trace element values for Central American Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Central East China Craton   Rb/Sr 0.18             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Central East China Craton   Rb/Sr 0.22             Compostional estimate of the entire Central East China province. Gao et al. 1998
Central East China Craton   Rb/Sr 0.26             Compostional estimate of the entire Central East China province. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Central East China Craton   Rb/Sr 0.31             Compostional estimate of the entire Central East China province. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Central East China Craton   Rb/Sr 0.24             Compostional estimate of the entire Central East China province. Gao et al. 1998
Central East China Craton   Rb/Sr 0.24             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Central East China Craton   Rb/Sr 0.14             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith using the median values of Rudnick & Fountain (1995). Gao et al. 1998
Central East China Craton   Rb/Sr 0.22             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith using the median values of Rudnick & Fountain (1995). Gao et al. 1998
Central East China Craton 38 Sr 288           ppm Compostional estimate of the entire Central East China province. Gao et al. 1998
Central East China Craton 38 Sr 343           ppm Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith using the median values of Rudnick & Fountain (1995). Gao et al. 1998
Central East China Craton 38 Sr 331           ppm Compostional estimate of the entire Central East China province. Average composition of granulite terrains. Gao et al. 1998
Central East China Craton 38 Sr 273           ppm Compostional estimate of the entire Central East China province. Includes sedimentary carbonates. Gao et al. 1998
Central East China Craton 38 Sr 298           ppm Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith (Rudnick & Fountain, 1995). Gao et al. 1998
Central East China Craton 38 Sr 286           ppm Compostional estimate of the entire Central East China province. Average compostion of granulite terrains and calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Central East China Craton 38 Sr 308           ppm Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Central East China Craton 38 Sr 283           ppm Compostional estimate of the entire Central East China province. Gao et al. 1998
Central East China Craton 38 Sr 266           ppm Compostional estimate of the entire Central East China province. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Central East China Craton 38 Sr 285           ppm Average composition for Central East China. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Central East China Craton 38 Sr 419           ppm Compostional estimate of the entire Central East China province. Calculated according to 70% intermediate granulite plus 15% mafic granulite plus 15% metapelite from central East China (Appendix 1; for detailed explanation see text). Gao et al. 1998
Central East China Craton   Sr/Nd 8.7             Compostional estimate of the entire Central East China province. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Central East China Craton   Sr/Nd 10             Compostional estimate of the entire Central East China province. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Central East China Craton   Sr/Nd 10.4             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Central East China Craton   Sr/Nd 11.7             Compostional estimate of the entire Central East China province. Gao et al. 1998
Central East China Craton   Sr/Nd 16             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith using the median values of Rudnick & Fountain (1995). Gao et al. 1998
Central East China Craton   Sr/Nd 11.4             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith using the median values of Rudnick & Fountain (1995). Gao et al. 1998
Central East China Craton   Sr/Nd 10.8             Compostional estimate of the entire Central East China province. Gao et al. 1998
Central East China Craton   Sr/Nd 12.3             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Central East China Craton   Sr/Sm 59             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Central East China Craton   Sr/Sm 52.3             Compostional estimate of the entire Central East China province. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Central East China Craton   Sr/Sm 65.1             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith using the median values of Rudnick & Fountain (1995). Gao et al. 1998
Central East China Craton   Sr/Sm 58.2             Compostional estimate of the entire Central East China province. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Central East China Craton   Sr/Sm 59.8             Compostional estimate of the entire Central East China province. Gao et al. 1998
Central East China Craton   Sr/Sm 66.3             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Central East China Craton   Sr/Sm 70             Compostional estimate of the entire Central East China province. Gao et al. 1998
Central East China Craton   Sr/Sm 87.9             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith using the median values of Rudnick & Fountain (1995). Gao et al. 1998
Chao Phraya River   87Sr/86Sr 0.7138             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Chao Phraya River 38 Sr 1.071             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Chassigny Meteorite 38 Sr 7.2           ppm Mars elemental abundances as given by Chassigny meteorite (chassignite) as given in Lodders 1988. McSween, Jr. 2004 Lodders 1998
Chert   87Sr/86Sr 0.71055         4   Average of 4 brown chert analyses. Due to the poor recovery of these notoriously hard chert beds, this chert section may be overdiluted by silica causing an underestimation of the geochemical abundances. The dilution factors have therefore been based on the down-core logging for SiO2 contents. Plank & Langmuir 1998
Chert   87Sr/86Sr 0.71055         4   Average of 4 brown chert analyses. Due to the poor recovery of these notoriously hard chert beds, this chert section may be overdiluted by silica causing an underestimation of the geochemical abundances. The dilution factors have therefore been based on the down-core logging for SiO2 contents. Plank & Langmuir 1998
Chert   87Sr/86Sr 0.7106             Isotopic estimates of the second of four layers from the sediment column of DSDP Leg 129's Hole 801. Isotopic ratios derived from several sources outside of this study. Elliot et al. 1997
Chert 38 Sr 76           ppm Compositional estimates of the second of four layers from the sediment column of DSDP Leg 129's Hole 801 according to the methods of Plank and Ludden 1992. Elliot et al. 1997
Chert 38 Sr 76         4 ppm Average of 4 brown chert analyses. Due to the poor recovery of these notoriously hard chert beds, this chert section may be overdiluted by silica causing an underestimation of the geochemical abundances. The dilution factors have therefore been based on the down-core logging for SiO2 contents. Plank & Langmuir 1998
Chert 38 Sr 35         4 ppm Average of 4 brown chert analyses. Due to the poor recovery of these notoriously hard chert beds, this chert section may be overdiluted by silica causing an underestimation of the geochemical abundances. The dilution factors have therefore been based on the down-core logging for SiO2 contents. Plank & Langmuir 1998
CI Chondrites 38 Sr 10.4           ppm Average calculated for volatile-free C1 chondrites after McDonough (1987). McDonough et al. 1992
CI Chondrites 38 Sr 8.6           ppm C1 Carbonaceous chondrite major and minor element compositions as given in Palme 1988. These values are given in an effort to accurately represent the C1 chondrites as based on an array of sources and derive a revised model for the composition of the Earth. McDonough & Sun 1995 Palme 1988
CI Chondrites 38 Sr 7.9           ppm C1 Carbonaceous chondrite major and minor element compositions as given in Wasson & Kallemeyn 1988. These values are given in an effort to accurately represent the C1 chondrites as based on an array of sources and derive a revised model for the composition of the Earth. McDonough & Sun 1995 Wasson & Kallemeyn 1988
CI Chondrites 38 Sr 2.88   0.04         CI Meteorite derived solar system abundances of various elements. Palme & Jones 2004
CI Chondrites 38 Sr 7.25           ppm Based on measurements on 3 out of 5 carbonaceous chrondrites namely Orgueil, Ivuna and Alais. McDonough & Sun 1995
CI Chondrites 38 Sr 7.8           ppm Abundance of elements in the solar system from Anders & Grevesse 1989 study of CI meteorites. Palme & Jones 2004 Anders & Grevesse 1989
CI Chondrites 38 Sr 7.26   0.363       ppm Composition of the Primitive Mantle of the Earth as based on CI Chondritic major and trace element compositions from Chapter 1.03 Palme & Jones 2004 Treatise of Geochemistry. Palme & O'Neill 2004 Palme & Jones 2004
CI Chondrites 38 Sr 7.8   0.632     18 ppm Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 38 Sr 7.26   0.363       ppm Abundance of elements in the solar system based off of Palme & Beer 1993 study of CI meteorites. Palme & Jones 2004 Palme & Beer 1993
Clastic Turbidites   87Sr/86Sr 0.7071         28   In this homogeneous turbidite unit 28 analyses were used to calculate an average by weighting interval height and lithology. Proportions of sand, silt and clay were estimated from core descriptions. Plank & Langmuir 1998
Clastic Turbidites 38 Sr 216         28 ppm In this homogeneous turbidite unit 28 analyses were used to calculate an average by weighting interval height and lithology. Proportions of sand, silt and clay were estimated from core descriptions. Plank & Langmuir 1998
Colombia Trench 38 Sr 807           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 3 or moderate. Plank & Langmuir 1998
Colorado River   87Sr/86Sr 0.7108             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
Colorado River 38 Sr 13.25             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
Columbia River   87Sr/86Sr 0.7121             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
Columbia River 38 Sr 0.982             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
Congo River   87Sr/86Sr 0.7155             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Congo River 38 Sr 0.313             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Congo River Particulates 38 Sr 61           µg/g Elemental particulates in major African rivers. Averages for major elements are weighted according to the suspended load prior to the construction of dams, for trace elements the average contents are mean values. Martin & Meybeck 1979
Continental Arc Andesite   87Sr/86Sr 0.70401         133   Average major and trace element values for Average Continental Arc Basalt given in weight percent and parts per million respectively. Kelemen et al. 2004
Continental Arc Andesite   87Sr/86Sr 0.70469         31   Average major and trace element values from Primitive Continental Arc Andesites given by Kelemen et al. 2004. All major element oxide values are given in wt. % and trace elements in ppm. Kelemen et al. 2004
Continental Arc Andesite 38 Sr 425.7         153 ppm Average major and trace element values for Average Continental Arc Basalt given in weight percent and parts per million respectively. Kelemen et al. 2004
Continental Arc Andesite 38 Sr 586.66         48 ppm Average major and trace element values from Primitive Continental Arc Andesites given by Kelemen et al. 2004. All major element oxide values are given in wt. % and trace elements in ppm. Kelemen et al. 2004
Continental Arcs 38 Sr 340           ppm Rudnick & Fountain 1995
Continental Arcs 38 Sr 357           ppm Lower crustal rocks are combined in proportions as indicated in Figure 2. Average compositions were calculated using mafic granulitic xenoliths since these xenoliths are believed to represent the lowermost continental crust. Rudnick & Fountain 1995
Continental Crust   Eu/Sr 0.0034             Major and minor element composition of the Bulk Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Continental Crust   Rb/Sr 0.121             In calculating the average crustal composition it is assumed that the proportions of upper, middle and lower crust are 2:1:3. The upper crustal average from Taylor & McLennan (1981) is presumed to be representative of upper crust of all geological ages. The middel and lower crust are presumed to be composed of 75% Archean material and 25% post-Archean material represented by average orogenic andesites. Thus the relative weightings for upper crust, Archean middle crust, Archean lower crust and post-Archean middle and lower crust become 8:3:9:4. Weaver & Tarney 1984
Continental Crust   Rb/Sr 0.15             Major and minor element composition of the Bulk Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Continental Crust   Rb/Sr 0.18             Rudnick & Fountain 1995
Continental Crust   Rb/Sr 0.105             Average crustal composition taken from Taylor and McLennan 1981. These values are referred to as the Andesite model and as compared to the values given by this study (Weaver & Tarney 1984) differs in only a handful of elements and ratios. The Andesite model is significantly less siliceous though, and also less correspondant to previous estimates of the Continental Crust. Weaver & Tarney 1984 Taylor & McLennan 1981
Continental Crust 38 Sr 320           ppm Major and minor element composition of the Bulk Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Continental Crust 38 Sr 317           µg/g Major and trace element compositional estimates of the Bulk Continental Crust given by Shaw et al. 1986. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Shaw et al. 1986
Continental Crust 38 Sr 325           µg/g Major and trace element compositional estimates of the Bulk Continental Crust given by Rudnick and Fountain 1995. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Rudnick & Fountain 1995
Continental Crust 38 Sr 320           µg/g Recommended composition of the Bulk Continental Crust where the total-crust composition is calculated according to the upper, middle and lower-crust compositions obtained in this study and corresponding weighing factors of 0.317, 0.296 and 0.388. The weighing factors are based on the layer thickness of the global continental crust, recalculated from crustal structure and areal proportion of various tectonic units given by Rudnick and Fountain 1995. Rudnick & Gao 2004 Rudnick & Fountain 1995
Continental Crust 38 Sr 333           µg/g Major and trace element compositional estimates of the Bulk Continental Crust given by Wedepohl 1995. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Wedepohl 1995
Continental Crust 38 Sr 285           µg/g Major and trace element compositional estimates of the Bulk Continental Crust given by Gao et al. 1998a. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Gao et al. 1998a
Continental Crust 38 Sr 375           µg/g Major and trace element compositional estimates of the Bulk Continental Crust given by Taylor 1964. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Taylor 1964
Continental Crust 38 Sr 260           µg/g Major and trace element compositional estimates of the Bulk Continental Crust given by Taylor and McLennan 1985 & 1995. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Taylor & McLennan 1985
Taylor & McLennan 1995
Continental Crust 38 Sr 503           µg/g Major and trace element compositional estimates of the Bulk Continental Crust given by Weaver and Tarney 1984. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Weaver & Tarney 1984
Continental Crust 38 Sr 320           µg/g Rudnick & Gao 2004
Continental Crust 38 Sr 337           ppm Bulk continental crust concentrations of minor and trace elements as based on Wedepohl 1991 and considering a Upper to Lower crust ratio of 43:57 respectively. Wedepohl & Hartmann 1994 Wedepohl 1991
Continental Crust 38 Sr 334           ppm Major and minor element composition of the Continental Crust as based on the study by Wedepohl 1994. Major elements are given as Oxides whereas the minor elements are given in singularly in ppm. Rudnick & Fountain 1995 Wedepohl 1995
Continental Crust 38 Sr 400           ppm Average crustal composition taken from Taylor and McLennan 1981. These values are referred to as the Andesite model and as compared to the values given by this study (Weaver & Tarney 1984) differs in only a handful of elements and ratios. The Andesite model is significantly less siliceous though, and also less correspondant to previous estimates of the Continental Crust. Weaver & Tarney 1984 Taylor & McLennan 1981
Continental Crust 38 Sr 260           ppm Enrichment of elements in the bulk continental crust given by Rudnick & Gao from Chapter 3.1 of the Treatise on Geochemistry 2004. Palme & O'Neill 2004 Rudnick & Gao 2004
Continental Crust 38 Sr 325           ppm Rudnick & Fountain 1995
Continental Crust 38 Sr 260           ppm Taylor & McLennan 1995
Continental Crust 38 Sr 333           ppm UCC = Shaw et al. (1967;1976); LCC = Rudnick & Presper (1990) in the proportions of Figure 2. Wedepohl 1995
Continental Crust 38 Sr 317           ppm Simple average between the LCC and UCC estimates. The LCC is based on the mean values of estimates of the regional abundances of high metamorphic grade Precambrian rock types ad divided by SiO2 contents into ultrabasis, basic, intermediate and silica-rich (see Table 3); the UCC is given in Table 1. Shaw et al. 1986
Continental Crust 38 Sr 503           ppm In calculating the average crustal composition it is assumed that the proportions of upper, middle and lower crust are 2:1:3. The upper crustal average from Taylor & McLennan (1981) is presumed to be representative of upper crust of all geological ages. The middel and lower crust are presumed to be composed of 75% Archean material and 25% post-Archean material represented by average orogenic andesites. Thus the relative weightings for upper crust, Archean middle crust, Archean lower crust and post-Archean middle and lower crust become 8:3:9:4. Weaver & Tarney 1984
Continental Crust   Sr/Nd 16             Rudnick & Fountain 1995
Continental Crust   Sr/Nd 16             Major and minor element composition of the Bulk Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Continental Intraplate Xenoliths   Rb/Sr 6             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Continental Intraplate Xenoliths   Rb/Sr 0.0222             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Continental Intraplate Xenoliths   Rb/Sr 0.034             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gregoire et al. 2002
Continental Intraplate Xenoliths   Rb/Sr 0.005             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Johnson et al. 1996
Continental Intraplate Xenoliths   Rb/Sr 0.148             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov et al. 1997
Continental Intraplate Xenoliths   Rb/Sr 0.0001             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Continental Intraplate Xenoliths   Rb/Sr 0.0009             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov 1996
Continental Intraplate Xenoliths   Rb/Sr 0.0001             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov 1996
Continental Intraplate Xenoliths   Rb/Sr 0.0001             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Eggins et al. 1998
Continental Intraplate Xenoliths   Rb/Sr 0.0388             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Eggins et al. 1998
Continental Intraplate Xenoliths   Rb/Sr 0.4838             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov 1996
Continental Intraplate Xenoliths   Rb/Sr 0.6579             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Continental Intraplate Xenoliths   Rb/Sr 0.0002             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Eggins et al. 1998
Continental Intraplate Xenoliths   Rb/Sr 0.0199             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov 1996
Continental Intraplate Xenoliths   Rb/Sr 0.92             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Eggins et al. 1998
Continental Intraplate Xenoliths   Rb/Sr 0.014             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov et al. 1997
Continental Intraplate Xenoliths 38 Sr 1900           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov 1998
Continental Intraplate Xenoliths 38 Sr 28.9           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov 1996
Continental Intraplate Xenoliths 38 Sr 0.27           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Continental Intraplate Xenoliths 38 Sr 78.5           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov 1996
Continental Intraplate Xenoliths 38 Sr 269           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov et al. 1997
Continental Intraplate Xenoliths 38 Sr 0.129           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Eggins et al. 1998
Continental Intraplate Xenoliths 38 Sr 26.9           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Continental Intraplate Xenoliths 38 Sr 0.076           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Continental Intraplate Xenoliths 38 Sr 470           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gregoire et al. 2002
Continental Intraplate Xenoliths 38 Sr 4087           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Continental Intraplate Xenoliths 38 Sr 249           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Glaser et al. 1999
Continental Intraplate Xenoliths 38 Sr 0.49           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov 1996
Continental Intraplate Xenoliths 38 Sr 77.5           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Glaser et al. 1999
Continental Intraplate Xenoliths 38 Sr 0.018           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Continental Intraplate Xenoliths 38 Sr 180           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Johnson et al. 1996
Continental Intraplate Xenoliths 38 Sr 662           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov et al. 1997
Continental Intraplate Xenoliths 38 Sr 155           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Eggins et al. 1998
Continental Intraplate Xenoliths 38 Sr 0.025           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Eggins et al. 1998
Continental Intraplate Xenoliths 38 Sr 0.034           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov 1996
Continental Intraplate Xenoliths 38 Sr 57.9           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Eggins et al. 1998
Continental Intraplate Xenoliths 38 Sr 20850           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Continental Shields & Platforms 38 Sr 331           ppm Rudnick & Fountain 1995
Continental Shields & Platforms 38 Sr 349           ppm Lower crustal rocks are combined in proportions as indicated in Figure 2. Average compositions were calculated using mafic granulitic xenoliths since these xenoliths are believed to represent the lowermost continental crust. Rudnick & Fountain 1995
Copper River   87Sr/86Sr 0.7071             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Copper River 38 Sr 1.449             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Core 38 Sr 0           µg/g Compostioinal models for the bulk Earth, core and silicate Earth are modified after McDonough & Sun (1995). McDonough 1998
Cratonic Xenoliths   Rb/Sr 0.037             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gregoire et al. 2002
Cratonic Xenoliths   Rb/Sr 332.5             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004
Cratonic Xenoliths   Rb/Sr 129.8             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gregoire et al. 2002
Cratonic Xenoliths   Rb/Sr 0.0013             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gergoire et al. 2002
Cratonic Xenoliths   Rb/Sr 0.068             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gregoire et al. 2002
Cratonic Xenoliths 38 Sr 14.3           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004
Cratonic Xenoliths 38 Sr 0.186           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004
Cratonic Xenoliths 38 Sr 509           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gergoire et al. 2002
Cratonic Xenoliths 38 Sr 4.2           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gregoire et al. 2002
Cratonic Xenoliths 38 Sr 1.14           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004
Cratonic Xenoliths 38 Sr 20379           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gregoire et al. 2002
Cratonic Xenoliths 38 Sr 221           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004
Cratonic Xenoliths 38 Sr 342           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004
Cratonic Xenoliths 38 Sr 99.1           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004
Cratonic Xenoliths 38 Sr 0.272           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004
Cratonic Xenoliths 38 Sr 0.511           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004
Cratonic Xenoliths 38 Sr 294           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gregoire et al. 2002
Cratonic Xenoliths 38 Sr 0.406           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004
Cratonic Xenoliths 38 Sr 570           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gregoire et al. 2002
Cratonic Xenoliths 38 Sr 6.13           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Stachel et al. 1998
D'Orbigny Angrite 38 Sr 142           µg/g Trace element compositional data on D'Orbigny Angrite. Mittlefehldt 2004 Mittlefehldt et al. 2002
Danube River   87Sr/86Sr 0.7089             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Danube River 38 Sr 2.759             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Depleted D-MORB basalts   87Sr/86Sr 0.7026             Isotopic compositions of Depleted Mantle (DM) according to Strontium isotopes in the 'Average' present day MORB.  These average MORB compositions are calculated using a more restrictive set of filters in order to assure that MORB representing low degree melts or melts which have experienced large amounts of fractional crystallization do not affect the average.  Though degree of melting or fractional crystallization do not effect the average isotopic composition, for incompatible trace element ratios to reflect source compositions only high degree melts should be used.  These will be known as 'D-MORB' for Depleted Mid-Ocean Ridge Basalts.  It is also noted that the values of the 'Average' and 'Extreme' D-MORB are very similar. Salters & Stracke 2004
Depleted D-MORB basalts   Sr/Nd 13.74             Constant' ratios in MORB as taken from the D-MORB (Depleted MORB) compilation as explained in Salters and Stracke 2003.  This compliation of 232 ratio values represent one method of removing low degree melts from MORB data.  All values have gone thru a series of tests and must meet certain criteria to be added to the D-MORB compilation.  This in turn leads to better estimates of values for the Depleted Mantle. Salters & Stracke 2004
Depleted D-MORB basalts   Sr/Nd 13.74             Constant' ratios in MORB as taken from the D-MORB (Depleted MORB) compilation as explained in Salters and Stracke 2003.  This compliation of 232 ratio values represent one method of removing low degree melts from MORB data.  All values have gone thru a series of tests and must meet certain criteria to be added to the D-MORB compilation.  This in turn leads to better estimates of values for the Depleted Mantle. Salters & Stracke 2004
Depleted Mantle   87Rb/86Sr 0.022             Present day depleted mantle trace elements are 10% of N-MORB abundances. Isotopic composition of the depleted mantle was chosen to lie near the depleted end of the Atlantic-Pacific MORB array. Parent/daughter ratios of the isotopic systems were calculated from the listed trace element and isotope data. Rehkamper & Hofmann 1997
Depleted Mantle   87Sr/86Sr 0.7025             Present day depleted mantle trace elements are 10% of N-MORB abundances. Isotopic composition of the depleted mantle was chosen to lie near the depleted end of the Atlantic-Pacific MORB array. Parent/daughter ratios of the isotopic systems were calculated from the listed trace element and isotope data. Rehkamper & Hofmann 1997
Depleted Mantle 38 Sr 9.8   1.862       ppm Estimate for the concentrations in the Depleted Mantle of most of the elements of the Periodic Table.  Sr/Nd is the element ratio/constraint used to make this estimate. Salters & Stracke 2004
Depleted Mantle 38 Sr 7.664     6.462 8.709   ppm Trace element composition of DMM (Depleted MORB Mantle) with minimum and maximum estimates based on assuming initiation of continuous depletion at 2.5Ga (min) and 3.5Ga (max). Workman & Hart 2005
Depleted Mantle 38 Sr 11.3           ppm Present day depleted mantle trace elements are 10% of N-MORB abundances. Isotopic composition of the depleted mantle was chosen to lie near the depleted end of the Atlantic-Pacific MORB array. Parent/daughter ratios of the isotopic systems were calculated from the listed trace element and isotope data. Units of trace elements assumed to be in PPM. Rehkamper & Hofmann 1997
Depleted MORB Mantle   87Sr/86Sr 0.70263             Average Strontium Isotopic compositions taken from Depleted MORB Mantle Su & Langmuir 2003. Workman & Hart 2005 Su & Langmuir 2003
Depleted MORB Mantle   Rb/Sr 0.0065             Present-day parent daughter ratios of Depleted MORB Mantle (DMM), calculated with a continuous depletion model starting 3 Ga. Workman & Hart 2005
Depleted-Depleted MORB Mantle   87Sr/86Sr 0.70219             Strontium isotopic ratios of Depleted Depleted MORB Mantle which is based off isotopes that are 2s depleted from the average MORB value. Workman & Hart 2005
Depleted-Depleted MORB Mantle   Rb/Sr 0.0033             Rubidium/Strontium ratio of Depleted Depleted MORB Mantle which is based off ratios that are 2s depleted from the average MORB value. Present-day parent daughter ratios, calculated with a continuous depletion model starting 3 Ga. Workman & Hart 2005
Depleted-Depleted MORB Mantle 38 Sr 6.092           ppm Trace element composition of DDMM (Depleted Depleted MORB Mantle) in ppm. Workman & Hart 2005
Diatom Oozes & Clay   87Sr/86Sr 0.709189         15   Weighted average based on DCP analyses for 200 m of diatom oozes. Plank & Langmuir 1998
Diatom Oozes & Clay 38 Sr 115         15 ppm Weighted average based on DCP analyses for 200 m of diatom oozes. Plank & Langmuir 1998
Diatome Clay   87Sr/86Sr 0.71057         6   Upper 240 m of a total section that is 335 m thick (Site 581) dominated by diatom clay. Plank & Langmuir 1998
Diatome Clay 38 Sr 115         6 ppm Upper 240 m of a total section that is 335 m thick (Site 581) dominated by diatom clay. Plank & Langmuir 1998
Diatome Mud   87Sr/86Sr 0.70763         6   Based on smear slides an average of 35% biogenic opal (SiO2) has been estimated, which is consistent with 17 wt% biogenic opal estimated from shipboard logs. The 6 analyses have simply been averaged since the SiO2 content is consistently ~57%. Plank & Langmuir 1998
Diatome Mud 38 Sr 336         6 ppm Based on smear slides an average of 35% biogenic opal (SiO2) has been estimated, which is consistent with 17 wt% biogenic opal estimated from shipboard logs. The 6 analyses have simply been averaged since the SiO2 content is consistently ~57%. Plank & Langmuir 1998
Diatome Ooze   87Sr/86Sr 0.70595         4   This ash-rich diatom ooze contains 50% diatoms and 7% ash particles. The individual analyses therefore have been diluted with 65% SiO2 based on an average 75% SiO2 in the diatoms. The analyses were further enriched by adding an average Aleutian andesite (Plank & Langmuir, 1988) to represent the ash layers in this section. Plank & Langmuir 1998
Diatome Ooze 38 Sr 249         4 ppm This ash-rich diatom ooze contains 50% diatoms and 7% ash particles. The individual analyses therefore have been diluted with 65% SiO2 based on an average 75% SiO2 in the diatoms. The analyses were further enriched by adding an average Aleutian andesite (Plank & Langmuir, 1988) to represent the ash layers in this section. Plank & Langmuir 1998
Diorite 38 Sr 610         260 ppm Average of 243 subsamples and 17 composites. Gao et al. 1998
Dniepr River   87Sr/86Sr 0.7084             Estimated 87Sr/86Sr ratios normalized to a value of 0.7080. Precision is of no importance in measurements here due to the seasonal variation which causes concentration values to fluxuate. Palmer & Edmond 1989
Dniepr River 38 Sr 2.5             Estimated Sr concentrations derived from fluvial Ca data due to the precipitation of Sr with calcium carbonates in the sea. Sr concentrations were determined using standard mass spectrometric techniques. Palmer & Edmond 1989
Don River   87Sr/86Sr 0.7084             Estimated 87Sr/86Sr ratios normalized to a value of 0.7080. Precision is of no importance in measurements here due to the seasonal variation which causes concentration values to fluxuate. Palmer & Edmond 1989
Don River 38 Sr 2.5             Estimated Sr concentrations derived from fluvial Ca data due to the precipitation of Sr with calcium carbonates in the sea. Sr concentrations were determined using standard mass spectrometric techniques. Palmer & Edmond 1989
Dover Sandstone 38 Sr 650         4 ppm Phosphatic pebbles and cements from nearshore, quartzose sandstones and siltstones of the mid-Paleozoic platform: Neptune Range (Dover Sandstones in the Pensacola Mountains, Antarctica). P2O5 = greater than 26%. Detection Limit = 2 ppm. Altschuller 1980 Cathcart & Schmidt 1974
DSDP/ODP Site 800   87Sr/86Sr 0.7081             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
DSDP/ODP Site 800 38 Sr 183           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
DSDP/ODP Site 801   87Sr/86Sr 0.70617             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
DSDP/ODP Site 801   87Sr/86Sr 0.7062             Isotopic estimates of Bulk Marianas sediment derived from several different sources of analysis based upon DSDP Hole 801. Elliot et al. 1997
DSDP/ODP Site 801 38 Sr 140           ppm Compositional estimates of Bulk Marianas sediment as observed from the sediment column of DSDP Hole 801. Values derived according to methods given in Plank and Ludden 1992. Elliot et al. 1997
DSDP/ODP Site 801 38 Sr 140           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Dvina River   87Sr/86Sr 0.7084             Estimated 87Sr/86Sr ratios normalized to a value of 0.7080. Precision is of no importance in measurements here due to the seasonal variation which causes concentration values to fluxuate. Palmer & Edmond 1989
Dvina River 38 Sr 2.5             Estimated Sr concentrations derived from fluvial Ca data due to the precipitation of Sr with calcium carbonates in the sea. Sr concentrations were determined using standard mass spectrometric techniques. Palmer & Edmond 1989
E-MORB   87Sr/86Sr 0.70392             Compositie analyses on E-MORB glasses from the Mid-Atlantic Ridge as reported in the RidgePetDB database. Major and most trace elements for this E-type MORB are taken from the sample EW19309-004-002. Klein 2004 Lehnert 2000
E-MORB 38 Sr 181           ppm Compositie analyses on E-MORB glasses from the Mid-Atlantic Ridge as reported in the RidgePetDB database. Major and most trace elements for this E-type MORB are taken from the sample EW19309-004-002. Klein 2004 Lehnert 2000
Early Archean Upper Crust   Ba/Sr 2             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Archean Upper Crust   Ba/Sr 2.1             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Archean Upper Crust   Rb/Sr 0.28             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Archean Upper Crust   Rb/Sr 0.25             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Archean Upper Crust 38 Sr 251           ppm Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Early Archean Upper Crust 38 Sr 287           ppm Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Early Proterozoic Upper Crust   Ba/Sr 2.4             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Proterozoic Upper Crust   Ba/Sr 2.5             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Proterozoic Upper Crust   Rb/Sr 0.32             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Proterozoic Upper Crust   Rb/Sr 0.36             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Proterozoic Upper Crust 38 Sr 287           ppm Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Early Proterozoic Upper Crust 38 Sr 280           ppm Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
East China Craton 38 Sr 298           ppm Compostional estimate of East China. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith (Rudnick & Fountain, 1995). Gao et al. 1998
East China Craton 38 Sr 284           ppm Compostional estimate of East China. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
East Sunda Trench   87Sr/86Sr 0.71682             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
East Sunda Trench 38 Sr 405           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Eastmain River   87Sr/86Sr 0.7285             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Eastmain River 38 Sr 0.068             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Eel River   87Sr/86Sr 0.7064             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Brass 1976
Eel River 38 Sr 3.689             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Brass 1976
Elbe River   87Sr/86Sr 0.7097             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Elbe River 38 Sr 6.532             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Enriched-Depleted MORB Mantle   87Sr/86Sr 0.70307             Strontium isotopic ratios of Enriched Depleted MORB Mantle which is based off isotopes that are 2s enriched over the average MORB value. Workman & Hart 2005
Enriched-Depleted MORB Mantle   Rb/Sr 0.0111             Rubidium/Strontium ratio of Enriched Depleted MORB Mantle which is based off ratios that are 2s enriched over the average MORB value. Present-day parent daughter ratios, calculated with a continuous depletion model starting 3 Ga. Workman & Hart 2005
Enriched-Depleted MORB Mantle   Rb/Sr 0.0111             Rubidium/Strontium ratio of Enriched Depleted MORB Mantle which is based off ratios that are 2s enriched over the average MORB value. Present-day parent daughter ratios, calculated with a continuous depletion model starting 3 Ga. Workman & Hart 2005
Enriched-Depleted MORB Mantle 38 Sr 9.718           ppm Trace element composition of EDMM (Enriched Depleted MORB Mantle) in ppm. Workman & Hart 2005
Estherville Mesosiderite 38 Sr 96           µg/g Trace element compositional data on Estherville Mesosiderite. Mittlefehldt 2004 Mittlefehldt in press
Simpson & Ahrens 1977
Extreme Depleted D-MORB basalts   87Sr/86Sr 0.702             Isotopic compositions of Depleted Mantle (DM) according to Strontium isotopes in the 'Extreme' present day MORB.  'Extreme' merely refers to the fact that these isotopic compositions are from the most depleted end of the MORB field. These average MORB compositions are calculated using a more restrictive set of filters in order to assure that MORB representing low degree melts or melts which have experienced large amounts of fractional crystallization do not affect the average.  Though degree of melting or fractional crystallization do not effect the average isotopic composition, for incompatible trace element ratios to reflect source compositions only high degree melts should be used.  These will be known as 'D-MORB' for Depleted Mid-Ocean Ridge Basalts.  It is also noted that the values of the 'Average' and 'Extreme' D-MORB are very similar. Salters & Stracke 2004
Felsic Archean Granulites 38 Sr 285 257       353 ppm Median values are used instead of average values in the model calculations to avoid outlyers of small sample populations. Rudnick & Fountain 1995
Felsic Granulites 38 Sr 416         137 ppm Average of 116 subsamples and 21 composites. Gao et al. 1998
Felsic Post-Archean Granulites 38 Sr 222 185       215 ppm Median values are used instead of average values in the model calculations to avoid outlyers of small sample populations. Rudnick & Fountain 1995
Felsic Volcanics 38 Sr 201         972 ppm Average of 895 subsamples and 77 composites. Gao et al. 1998
Felsic Volcanics 38 Sr 170           ppm Condie 1993
Felsic Volcanics 38 Sr 160           ppm Condie 1993
Felsic Volcanics 38 Sr 150           ppm Condie 1993
Felsic Volcanics 38 Sr 150           ppm Condie 1993
Felsic Volcanics 38 Sr 125           ppm Condie 1993
Felsic Volcanics 38 Sr 136           ppm Condie 1993
Felsic Volcanics 38 Sr 111           ppm Condie 1993
Ferruginous Clay   87Sr/86Sr 0.71639         2   The proportions of the Fe-rich and carbonate-rich clays are roughly equal based on barrel sheet descriptions. One analysis of each rock type is simply averaged. Plank & Langmuir 1998
Ferruginous Clay 38 Sr 211         2 ppm The proportions of the Fe-rich and carbonate-rich clays are roughly equal based on barrel sheet descriptions. One analysis of each rock type is simply averaged. Plank & Langmuir 1998
Frankfort Howardites 38 Sr 24           µg/g Trace element compositional data on Frankfort Howardite. Mittlefehldt 2004 McCarthy et al. 1972
Palme et al. 1978
Fraser River   87Sr/86Sr 0.712             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Fraser River 38 Sr 0.913             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Fresh Mid-Ocean Ridge Basalts   87Sr/86Sr 0.70274         104   Average major and trace element values for Primitive MORB given in weight percent and parts per million respectively. Kelemen et al. 2004
Fresh Mid-Ocean Ridge Basalts   87Sr/86Sr 0.7027             Isotopic compositions of Depleted Mantle (DM) according to Strontium isotopic values from the 'All MORB' data compilation.  To achieve an average isotopic composition of the Depleted Mantle the PetDB database was utilized. All eruptive products from mid-ocean spreading centers were compiled and filtered to include only samples that were erupted in water depths in excess of 2000 m.  All samples that contained more than 55 wt.% SiO2 were excluded as well. Samples with non-smooth REE patterns were excluded wherever applicable.  With these minimal steps of filtering, this ensures that at least part of the plume influenced basalts are excluded.    Salters & Stracke 2004
Fresh Mid-Ocean Ridge Basalts 38 Sr 141.42         55 ppm Average major and trace element values for Primitive MORB given in weight percent and parts per million respectively. Kelemen et al. 2004
Fresh Mid-Ocean Ridge Basalts   Sr/Nd 11.88             Constant' ratios in MORB as taken from the 'All MORB' data set according to Salters and Stracke 2003.  The 'All MORB' data set is a compilation of 639 sample ratios to represent the MORB composition.  In using these values and applying a simple mathematical process order to remove the outliers, which are found by calculating the upper and lower quartile range, then applying the outlier criterion (explained in Salters and Stracke 2003 pg.7).  In addition to this method all the samples with La > 5 ppm were rejected.  This, much like with the tests and criteria of the D-MORB values, is a method of removing low degree melts from the MORB data in order to come closer to a value for Depleted Mantle.  Salters & Stracke 2004
Fresh MORB in Indian Ocean   87Sr/86Sr 0.7035             Analyses on MORB glasses from the Indian Ocean as given by Klein et al. 1991. Klein 2004 Klein et al. 1991
Fresh MORB in Indian Ocean 38 Sr 191           ppm Analyses on MORB glasses from the Indian Ocean as given by Klein et al. 1991. Klein 2004 Klein et al. 1991
Ganges River   87Sr/86Sr 0.7257             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Ganges River 38 Sr 1.581             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Garnet Peridotites 38 Sr   29         ppm McDonough 1991 Maaloe & Aoki 1975
Jordan 1979
Boyd 1989
McDonough 1990
Garonne River   87Sr/86Sr 0.7106             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Albarede & Michard 1987
Garonne River 38 Sr 1.267             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Albarede & Michard 1987
Garonne River Particulates 38 Sr 164           µg/g Elemental particulates in major European rivers. Averages for major elements are weighted according to the suspended load prior to the construction of dams, for trace elements the average contents are mean values. Martin & Meybeck 1979
Granites   Eu/Sr 0.0032             Analysis of Archean Calc-Alkaline Type 1 & 2 Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Sylvester 1995
Granites   Eu/Sr 0.0039         8   Analysis of Glenelg River Complex Leucogranite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Kemp 2001
Granites   Rb/Sr 0.24             Analysis of Archean Calc-Alkaline Type 1 & 2 Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Sylvester 1995
Granites   Rb/Sr 0.44         8   Analysis of Glenelg River Complex Leucogranite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Kemp 2001
Granites 38 Sr 283.1         8 ppm Analysis of Glenelg River Complex Leucogranite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Kemp 2001
Granites 38 Sr 120           ppm Condie 1993
Granites 38 Sr 145           ppm Condie 1993
Granites 38 Sr 479           ppm Analysis of Archean Calc-Alkaline Type 1 & 2 Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Sylvester 1995
Granites 38 Sr 122           ppm Condie 1993
Granites 38 Sr 335         1226 ppm Average of 1140 subsamples and 86 composites. Gao et al. 1998
Granites 38 Sr 236         402 ppm Average of 369 subsamples and 33 composites. Gao et al. 1998
Granites   Sr/Nd 10.64             Analysis of Archean Calc-Alkaline Type 1 & 2 Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Sylvester 1995
Granites   Sr/Nd 38.31         8   Analysis of Glenelg River Complex Leucogranite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Kemp 2001
Granulites   Rb/Sr 0.89 0.14       478   Average of granulite facies terrains. Rudnick & Presper 1990
Granulites   Rb/Sr 0.48 0.12       597   Average of granulite facies terrains. Rudnick & Presper 1990
Granulites   Rb/Sr 0.019             Lower crust composition based on the estimates of Weaver and Tarney 1982. The lower crust itself was found to have the composition of Archaean Lewisian granulite facies gneiss. Weaver & Tarney 1984 Weaver & Tarney 1982
Granulites 38 Sr 285 212       524 ppm Average of granulite facies terrains. Rudnick & Presper 1990
Granulites 38 Sr 324 257       638 ppm Average of granulite facies terrains. Rudnick & Presper 1990
Granulites 38 Sr 569           ppm Lower crust composition based on the estimates of Weaver and Tarney 1982. The lower crust itself was found to have the composition of Archaean Lewisian granulite facies gneiss. Weaver & Tarney 1984 Weaver & Tarney 1982
Granulitic Xenolites   Rb/Sr 0.078 0.014       237   Average of granulite facies xenoliths. Rudnick & Presper 1990
Granulitic Xenolites 38 Sr 422 338       290 ppm Average of granulite facies xenoliths. Rudnick & Presper 1990
Graywackes 38 Sr 240           ppm Condie 1993
Graywackes 38 Sr 290           ppm Condie 1993
Graywackes 38 Sr 280           ppm Condie 1993
Graywackes 38 Sr 280           ppm Condie 1993
Graywackes 38 Sr 265           ppm Condie 1993
Graywackes 38 Sr 220           ppm Condie 1993
Greater Antilles Basalt   87Sr/86Sr 0.70432         1   Average major and trace element values for Greater Antilles Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Greater Antilles Basalt 38 Sr 284.6         16 ppm Average major and trace element values for Greater Antilles Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Green Clay   87Sr/86Sr 0.70595         3   Silty clay (37.5%), clay (50%) and nannofossil ooze (12.5%) make up this section. Two analyses have been made for silty clay and the clay lithologies, whereas the ooze is assumed to contain 56% CaO, 44% CO2 and 1000 ppm Sr. Plank & Langmuir 1998
Green Clay 38 Sr 266         3 ppm Silty clay (37.5%), clay (50%) and nannofossil ooze (12.5%) make up this section. Two analyses have been made for silty clay and the clay lithologies, whereas the ooze is assumed to contain 56% CaO, 44% CO2 and 1000 ppm Sr. Plank & Langmuir 1998
Greywackes 38 Sr 201           ppm Total average of group averages from USA, Canada, Australia, Sri Lanka and Germany using an equal statistical weight. Wedepohl 1995
Havero Urelite 38 Sr 0.7           µg/g Trace element compositional data on Havero Urelite. Mittlefehldt 2004 Wanke et al. 1972
Hayes River   87Sr/86Sr 0.7177             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Hayes River 38 Sr 0.411             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Honshu Basalt   87Sr/86Sr 0.70437         27   Average major and trace element values for Honshu Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Honshu Basalt 38 Sr 715.2         38 ppm Average major and trace element values for Honshu Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Hudson River   87Sr/86Sr 0.7118             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Hudson River 38 Sr 1.454             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Hydrothermal Sediment 38 Sr 822         4 ppm Average of 4 hydrothermal sediments or clays using DCP analyses. Plank & Langmuir 1998
Hydrothermal Vents   87Sr/86Sr 0.7035             Global content of isotopic strontium at hydrothermally active areas. Low strontium content is indicative of mobilisation related to the water/rock ratio in the reaction zones and seawater passing thru the anhydrite precipitation zone. Palmer & Edmond 1989
Hydrothermal Vents 38 Sr 126             Global content of strontium at hydrothermally active areas. Sr levels from vent fluids are linearly correlated with Ca and Cl which is indicative of control of Sr by chloro-complexing along with Sr precipitation in sloid solution in secondary Ca minerals (Epidote). Palmer & Edmond 1989
Ibitira Eucrite 38 Sr 81           µg/g Trace element compositional data on Ibitira Eucrite. Mittlefehldt 2004 Jarosewich 1990
Barrat et al. 2000
Indonesia   87Sr/86Sr 0.7083             Estimated 87Sr/86Sr ratios normalized to a value of 0.7080. Precision is of no importance in measurements here due to the seasonal variation which causes concentration values to fluxuate. Palmer & Edmond 1989
Indonesia 38 Sr 0.3             Estimated Sr concentrations derived from fluvial Ca data due to the precipitation of Sr with calcium carbonates in the sea. Sr concentrations were determined using standard mass spectrometric techniques. Palmer & Edmond 1989
Indus River   87Sr/86Sr 0.7112             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
Indus River 38 Sr 3.33             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
Interior North China Craton 38 Sr 398           ppm Compostional estimate of the interior of the North China craton. Gao et al. 1998
Interior North China Craton 38 Sr 336           ppm Compostional estimate of the interior of the North China craton. Average compostion of granulite terrains and calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Interior North China Craton 38 Sr 267           ppm Compostional estimate of the interior of the North China craton. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Interior North China Craton 38 Sr 267           ppm Compostional estimate of the interior of the North China craton. Includes sedimentary carbonates. Gao et al. 1998
Interior North China Craton 38 Sr 381           ppm Compostional estimate of the interior of the North China craton. Average compostion of granulite terrains. Gao et al. 1998
Interlayerd Clay & Chert   87Sr/86Sr 0.71297         2   Bottom 65 m of a total section that is 335 m thick (Site 581) dominated by interlayered clay and chert. Plank & Langmuir 1998
Interlayerd Clay & Chert 38 Sr 22         2 ppm Bottom 65 m of a total section that is 335 m thick (Site 581) dominated by interlayered clay and chert. Plank & Langmuir 1998
Interlayered Chert & Limestone   87Sr/86Sr 0.71055         5   Average of 5 chert and limestone analyses. Due to the poor recovery of these notoriously hard chert beds, this chert section may be overdiluted by silica causing an underestimation of the geochemical abundances. The dilution factors have therefore been based on the down-core logging for SiO2 contents. The logging data was also used to determine the average CaO as calcium carbonate to dilute all elements (except Sr) accordingly. Plank & Langmuir 1998
Interlayered Chert & Limestone 38 Sr 265         5 ppm Average of 5 chert and limestone analyses. Due to the poor recovery of these notoriously hard chert beds, this chert section may be overdiluted by silica causing an underestimation of the geochemical abundances. The dilution factors have therefore been based on the down-core logging for SiO2 contents. The logging data was also used to determine the average CaO as calcium carbonate to dilute all elements (except Sr) accordingly. Plank & Langmuir 1998
Interlayered Clay & Chert 38 Sr 200         12 ppm This interval is estimated to be 25% chert based on core descriptions. Average clay from 30-58 m depth is diluted with 25% chert at 100% Si. Average of 12 cherts and clays using DCP analyses. Plank & Langmuir 1998
Intermediate Granulites 38 Sr 484         136 ppm Average of 115 subsamples and 21 composites. Gao et al. 1998
Intermediate Mafic Archean Granulites 38 Sr 519 454       100 ppm Median values are used instead of average values in the model calculations to avoid outlyers of small sample populations. Rudnick & Fountain 1995
Intermediate Mafic Granulitic Xenolites 38 Sr 549 435       41 ppm Median values are used instead of average values in the model calculations to avoid outlyers of small sample populations. Rudnick & Fountain 1995
Intermediate Mafic Post-Archean Granulites 38 Sr 408 346       126 ppm Median values are used instead of average values in the model calculations to avoid outlyers of small sample populations. Rudnick & Fountain 1995
Intermediate Precambrian Granulites 38 Sr 550         26 ppm Shaw et al. 1986
Irrawady River   87Sr/86Sr 0.7102             Estimated 87Sr/86Sr ratios normalized to a value of 0.7080. Precision is of no importance in measurements here due to the seasonal variation which causes concentration values to fluxuate. Palmer & Edmond 1989
Irrawady River 38 Sr 3.393             Estimated Sr concentrations derived from fluvial Ca data due to the precipitation of Sr with calcium carbonates in the sea. Sr concentrations were determined using standard mass spectrometric techniques. Palmer & Edmond 1989
Island Arc Andesite   87Sr/86Sr 0.70493         14   Average major and trace element values from Primitive Oceanic Arc Andesites given by Kelemen et al. 2004. All major element oxide values are given in wt. % and trace elements in ppm. Kelemen et al. 2004
Island Arc Andesite   87Sr/86Sr 0.70389         141   Average major and trace element values for Average Oceanic Arc Basalt given in weight percent and parts per million respectively. Kelemen et al. 2004
Island Arc Andesite 38 Sr 358.8         25 ppm Average major and trace element values from Primitive Oceanic Arc Andesites given by Kelemen et al. 2004. All major element oxide values are given in wt. % and trace elements in ppm. Kelemen et al. 2004
Island Arc Andesite 38 Sr 306.74         181 ppm Average major and trace element values for Average Oceanic Arc Basalt given in weight percent and parts per million respectively. Kelemen et al. 2004
Island Arcs   Rb/Sr 0.16         323   Analysis of Continental Arc Granite from the Peninsula Range Batholith represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Silver & Chappell 1998
Island Arcs 38 Sr 400           ppm Taylor & McLennan 1995
Island Arcs 38 Sr 375         323 ppm Analysis of Continental Arc Granite from the Peninsula Range Batholith represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Silver & Chappell 1998
Island Arcs   Sr/Nd 26.78         323   Analysis of Continental Arc Granite from the Peninsula Range Batholith represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Silver & Chappell 1998
Izu-Bonin Trench   87Sr/86Sr 0.70617             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 4 or low. Plank & Langmuir 1998
Izu-Bonin Trench 38 Sr 110           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 4 or low. Plank & Langmuir 1998
Japan   87Sr/86Sr 0.7076             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
Japan 38 Sr 0.63             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
Japan Trench   87Sr/86Sr 0.71121             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 2 or high. Plank & Langmuir 1998
Japan Trench 38 Sr 87           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 2 or high. Plank & Langmuir 1998
Java Trench   87Sr/86Sr 0.71682             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Java Trench 38 Sr 218           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Juba River   87Sr/86Sr 0.7061             Estimated 87Sr/86Sr ratios normalized to a value of 0.7080. Precision is of no importance in measurements here due to the seasonal variation which causes concentration values to fluxuate. Palmer & Edmond 1989
Juba River 38 Sr 1.5             Estimated Sr concentrations derived from fluvial Ca data due to the precipitation of Sr with calcium carbonates in the sea. Sr concentrations were determined using standard mass spectrometric techniques. Palmer & Edmond 1989
Kamchatka Basalt   87Sr/86Sr 0.70344         28   Average major and trace element values for Kamchatka Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Kamchatka Basalt 38 Sr 345.68         41 ppm Average major and trace element values for Kamchatka Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Kamchatka Trench   87Sr/86Sr 0.71121             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 3 or moderate. Plank & Langmuir 1998
Kamchatka Trench 38 Sr 38           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 3 or moderate. Plank & Langmuir 1998
Karatau 38 Sr 790         10 ppm Dark, granular and oolitic phosphorites, cherty and dolomitic, in a sequence of black shales and dolomites of the Lesser Karatau geosyncline, Karatau, Kazakhstan U.S.S.R.  Averages of 5-10 specimens except for Cr, Mo and Li: P2O5 = 26-32%Detection Limit = 2 ppm. Altschuller 1980 Kholodov 1963
Kazan River   87Sr/86Sr 0.7258             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Kazan River 38 Sr 0.263             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Kenya   87Sr/86Sr 0.7114             Estimated 87Sr/86Sr ratios normalized to a value of 0.7080. Precision is of no importance in measurements here due to the seasonal variation which causes concentration values to fluxuate. Palmer & Edmond 1989
Kenya 38 Sr 1.1             Estimated Sr concentrations derived from fluvial Ca data due to the precipitation of Sr with calcium carbonates in the sea. Sr concentrations were determined using standard mass spectrometric techniques. Palmer & Edmond 1989
Kerm Trench   87Sr/86Sr 0.70799             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 4 or low. Plank & Langmuir 1998
Kerm Trench 38 Sr 222           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 4 or low. Plank & Langmuir 1998
Kermadec Basalts   87Sr/86Sr 0.70419         19   Average major and trace element values for Kermadec Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Kermadec Basalts 38 Sr 274.9         10 ppm Average major and trace element values for Kermadec Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Kimberlite   87Sr/86Sr       0.704 0.7043 2   Average major and trace element composition and selected isotopic ratio data for Koidu Kimberlites from Sierra Leone. Farmer 2004 Taylor et al. 1994
Kimberlite 38 Sr 601         22 ppm Average major and trace element composition and selected isotopic ratio data for Koidu Kimberlites from Sierra Leone. Farmer 2004 Taylor et al. 1994
Koksoak River   87Sr/86Sr 0.7301             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Koksoak River 38 Sr 0.171             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Komatiites 38 Sr 11           ppm Condie 1993
Kuriles Trench   87Sr/86Sr 0.71121             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 2 or high. Plank & Langmuir 1998
Kuriles Trench 38 Sr 87           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 2 or high. Plank & Langmuir 1998
Kuskokwim River   87Sr/86Sr 0.709             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Kuskokwim River 38 Sr 1.603             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Kyzyl Kum 38 Sr 70         5 ppm Phosphatic sandstones and shales, near shore deltaic and littoral sediments of Kyzyl Kum, Uzbekistan, P2O5: >10%. Detection Limit = 2 ppm. Altschuller 1980 Kapustyanski 1964
La Caja Formation 38 Sr 1010         8 ppm Gray, calcareous, pelletal phosphorites in a sequence of offshore cherty and silty limestones of the Mexican geosyncline, La Caja Formation in Concepcion del Oro of the Zacatecas province, Mexico. Detection Limit = 2 ppm. Altschuller 1980 Rogers et al. 1956
La Grande River   87Sr/86Sr 0.7346             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
La Grande River 38 Sr 0.137             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Late Archean Upper Crust   Ba/Sr 2             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Archean Upper Crust   Ba/Sr 1.9             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Archean Upper Crust   Rb/Sr 0.28             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Archean Upper Crust   Rb/Sr 0.24             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Archean Upper Crust 38 Sr 300           ppm Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Late Archean Upper Crust 38 Sr 267           ppm Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Late Proterozoic Upper Crust   Ba/Sr 2.4             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Proterozoic Upper Crust   Ba/Sr 2.5             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Proterozoic Upper Crust   Rb/Sr 0.36             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Proterozoic Upper Crust   Rb/Sr 0.33             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Proterozoic Upper Crust 38 Sr 288           ppm Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Late Proterozoic Upper Crust 38 Sr 281           ppm Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Lesser Antilles Basalt   87Sr/86Sr 0.70482         46   Average major and trace element values for Lesser Antilles Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Lesser Antilles Basalt 38 Sr 314.97         57 ppm Average major and trace element values for Lesser Antilles Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Lower Continental Crust   Eu/Sr 0.0032             Major and minor element composition of the Lower Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Lower Continental Crust   Rb/Sr 0.033             Rudnick & Fountain 1995
Lower Continental Crust   Rb/Sr 0.03             Major and minor element composition of the Lower Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Lower Continental Crust 38 Sr 348           ppm Major and minor element composition of the Lower Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Lower Continental Crust 38 Sr 425           ppm Present day Lower Continental Crust composition as given in Taylor & McLennan 1981. Values are used as one of many models of Lower Continental crustal composition to which other such analyses are compared. Shaw et al. 1986 Taylor & McLennan 1981
Lower Continental Crust 38 Sr 317           ppm Based on the mean values of estimates of the regional abundances of high metamorphic grade Precambrian rock types ad divided by SiO2 contents into ultrabasis, basic, intermediate and silica-rich (see Table 3). Shaw et al. 1986
Lower Continental Crust 38 Sr 352           ppm LCC = Rudnick & Presper (1990) in the proportions of Figure 2. Wedepohl 1995
Lower Continental Crust 38 Sr 348           ppm Rudnick & Fountain 1995
Lower Continental Crust 38 Sr 230           ppm Taylor & McLennan 1995
Lower Continental Crust 38 Sr 230           µg/g Major and trace element compositional estimates of the lower continental crust as given by Taylor and McLennan 1985, 1995 using average lower crustal abundances. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Taylor & McLennan 1985
Taylor & McLennan 1995
Lower Continental Crust 38 Sr 308           µg/g Major and trace element compositional estimates of the lower continental crust as given by Gao et al. 1998a using seismic velocities and granulite data from the North China craton. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Gao et al. 1998a
Lower Continental Crust 38 Sr 352           µg/g Major and trace element compositional estimates of the lower continental crust as given by Wedepohl 1995 using lower crust in Western Europe derived from siesmic data and granulite xenolith composition. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Wedepohl 1995
Lower Continental Crust 38 Sr 354           µg/g Major and trace element compositional estimates of the lower continental crust as given by Rudnick and Presper 1990 using median worldwide lower crustal xenoliths. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Rudnick & Presper 1990
Lower Continental Crust 38 Sr 569           µg/g Major and trace element compositional estimates of the lower continental crust as given by Weaver and Tarney 1984 using Scourian granulites from Scotland. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Weaver & Tarney 1984
Lower Continental Crust 38 Sr 348           µg/g Major and trace element compositional estimates of the lower continental crust as given by Rudnick and Fountain 1995 using global average seismic velocities and granulites. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Rudnick & Fountain 1995
Lower Continental Crust 38 Sr 447           µg/g Major and trace element compositional estimates of the lower continental crust as given by Shaw et al. 1994 using Kapuskasing Structural Zone granulites. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Shaw et al. 1994
Lower Continental Crust 38 Sr 196           µg/g Major and trace element compositional estimates of the lower continental crust as given by Rudnick and Taylor 1987 using lower crustal xenoliths from the McBride Province, Queensland, Australia. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Rudnick & Taylor 1987
Lower Continental Crust 38 Sr 518           µg/g Major and trace element compositional estimates of the lower continental crust as given by Condie and Selverstone 1999 using lower crustal xenoliths from the four corners region, Colorado Plateu, USA. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Condie & Selverstone 1999
Lower Continental Crust 38 Sr 286           µg/g Major and trace element compositional estimates of the lower continental crust as given by Villaseca et al. 1999 using lithologic proportions of lover crustal xenoliths from Central Spain. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Villaseca et al. 1999
Lower Continental Crust 38 Sr 712           µg/g Major and trace element compositional estimates of the lower continental crust as given by Liu et al. 2001 using lower crustal xenoliths from Hannuoba, North China Craton. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Liu et al. 2001
Lower Continental Crust 38 Sr 348           µg/g Recommended composition of the Lower Continental crust as given by various sources. Major element oxides are given in wt.% and trace element concentrations are given in either ng/g or ¿g/g. Rudnick & Gao 2004 Rudnick & Fountain 1995
Lower Continental Crust   Sr/Nd 30             Rudnick & Fountain 1995
Lower Continental Crust   Sr/Nd 31.63             Major and minor element composition of the Lower Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Luzon Basalt   87Sr/86Sr 0.70442         4   Average major and trace element values for Luzon Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Luzon Basalt 38 Sr 566.18         11 ppm Average major and trace element values for Luzon Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Maas River   87Sr/86Sr 0.7085             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Maas River 38 Sr 2.506             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Macibini Eucrites 38 Sr 77           µg/g Trace element compositional data on Macibini Eucrite. Mittlefehldt 2004 McCarthy et al. 1973
Buchanan et al. 2000b
MacKenzie River   87Sr/86Sr 0.711             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
MacKenzie River 38 Sr 2             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Mae Klong River   87Sr/86Sr 0.7164             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Mae Klong River 38 Sr 0.75             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Mafic Archean Granulites 38 Sr 227 156       89 ppm Median values are used instead of average values in the model calculations to avoid outlyers of small sample populations. Rudnick & Fountain 1995
Mafic Granulites 38 Sr 263         128 ppm Average of 93 subsamples and 35 composites. Gao et al. 1998
Mafic Granulitic Xenolites 38 Sr 421 365       207 ppm Median values are used instead of average values in the model calculations to avoid outlyers of small sample populations. Values from kimberlite-hosted xenolites were omitted owing to alteratio effects. Rudnick & Fountain 1995
Mafic Intrusions 38 Sr 549         308 ppm Average of 276 subsamples and 32 composites. Gao et al. 1998
Mafic Post-Archean Granulites 38 Sr 378 232       80 ppm Median values are used instead of average values in the model calculations to avoid outlyers of small sample populations. Rudnick & Fountain 1995
Makran Trench 38 Sr 422           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 3 or moderate. Plank & Langmuir 1998
Malvern Howardites 38 Sr 59           µg/g Trace element compositional data on Malvern Howardite. Mittlefehldt 2004 Palme et al. 1978
Manganese Nodules 38 Sr 830           ppm Average concentrations of various elements found in deep sea Manganese nodules.  Sea salt components are subtracted assuming all chloride is of seawater origin. Li 1991 Baturin 1988
Manicougan River   87Sr/86Sr 0.7169             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Manicougan River 38 Sr 0.137             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Manning River   87Sr/86Sr 0.7063             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
Manning River 38 Sr 1.02             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
Marianas Basalt   87Sr/86Sr 0.70303         45   Average major and trace element values for Marianas Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Marianas Basalt 38 Sr 231.78         51 ppm Average major and trace element values for Marianas Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Marianas Trench   87Sr/86Sr 0.70617             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Marianas Trench 38 Sr 161           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Marine Organisms 38 Sr 1100           ppm Concentration values of various elements found in marine organisms. Element concentrations are mainly from brown algae data from Bowen 1979, which are also indicative of phytoplankton and zooplankton. Li 1991 Bowen 1979
Marine Pelagic Clay 38 Sr 2000           ppm Average concentrations of elements in oceanic pelagic clays.  The elemental values found in the Pelagic clays give good indications on river input of elements to the oceans.  From river sources to mid oceanic ridge sinks this is also a good indicator of atmospheric conditions for varying periods of world history.   Li 1982 Turekian & Wedepohl 1961
Marine Pelagic Clay 38 Sr 180           ppm Average concentrations for various elements enriched in Oceanic Pelagic Clays.  Compared to the element values of Shales, the Pelagic Clays are relatively similar with few exceptions.   All sea salt components are subtracted from the sample analysis assuming all chloride is of seawater origin. Li 1991 Turekian & Wedepohl 1961
Marine Phosphorites 38 Sr 750 750   70 1900 18 ppm Average trace element abundances in Marine Phosphorite as based on 18 regional averages and various number of analyses averaged. All Comp low values of '0' are actually 'N.D.' values. Altschuller 1980
Marine Shales 38 Sr 300           ppm Average concentrations of various elements in shales, note that the values are within a factor of two or better as compared to Oceanic Pelagic Clays with a few exceptions.  The exceptions, as far as this reference is concerned, are not critical and any conclusions drawn are applicable to both Oceanic Pelagic Clays and Shales.  Li 1991 Turekian & Wedepohl 1961
Marine Shales 38 Sr 300           ppm Concentrations of trace elements in shale as given by Turekian and Wedepohl 1961. Altschuller 1980 Turekian & Wedepohl 1961
Mavic Volcanics 38 Sr 403         632 ppm Average of 538 subsamples and 49 composites. Gao et al. 1998
Mead Peak Phosphatic Shale Member 38 Sr 0.1         41 ppm Average phosphorite of Meade Peak Phosphatic Shale member of Phosphoria Formation. Modal values used for minor elements. Gulbrandsen 1966
Mekong River   87Sr/86Sr 0.7102             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Mekong River 38 Sr 3.393             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Mekong River Particulates 38 Sr 92           µg/g Elemental particulates in major Asian rivers. Averages for major elements are weighted according to the suspended load prior to the construction of dams, for trace elements the average contents are mean values. Martin & Meybeck 1979
Melitite-rich Chondrules 38 Sr 136     110 200 10 ppm Melilite-rich chondrules which are spherical aggregates of melilite, Ti-rich fassaite, spinel and anorthite with a coarsely crystalline igneous texture.  These chondrules have high Al2O3 content as well as CaO and an unfractionated REE pattern that averages 10-15 times normal chondritic abundances. Martin & Mason 1974
Mesozoic & Cenozoic Extensions 38 Sr 291           ppm Rudnick & Fountain 1995
Mesozoic & Cenozoic Extensions 38 Sr 307           ppm Lower crustal rocks are combined in proportions as indicated in Figure 2. Average compositions were calculated using mafic granulitic xenoliths since these xenoliths are believed to represent the lowermost continental crust. Rudnick & Fountain 1995
Mesozoic & Cenozoic Orogens 38 Sr 307           ppm Lower crustal rocks are combined in proportions as indicated in Figure 2. Average compositions were calculated using mafic granulitic xenoliths since these xenoliths are believed to represent the lowermost continental crust. Rudnick & Fountain 1995
Mesozoic & Cenozoic Orogens 38 Sr 307           ppm Rudnick & Fountain 1995
Mesozoic & Cenozoic Upper Crust   Ba/Sr 2.8             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Mesozoic & Cenozoic Upper Crust   Ba/Sr 2.6             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Mesozoic & Cenozoic Upper Crust   Rb/Sr 0.39             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Mesozoic & Cenozoic Upper Crust   Rb/Sr 0.35             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Mesozoic & Cenozoic Upper Crust 38 Sr 271           ppm Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Mesozoic & Cenozoic Upper Crust 38 Sr 262           ppm Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Metafelsic Volcanics 38 Sr 637         41 ppm Average of 38 subsamples and 3 composites. Gao et al. 1998
Metalliferous Clay 38 Sr 252         12 ppm Average of 12 metalliferous clays between 10-30 m depth using DCP analyses. Plank & Langmuir 1998
Metapelitic Granulitic Xenolites 38 Sr 331 284       69 ppm Median values are used instead of average values in the model calculations to avoid outlyers of small sample populations. Rudnick & Fountain 1995
Mexico Trench 38 Sr 234           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 2 or high. Plank & Langmuir 1998
Middle Churchill River   87Sr/86Sr 0.72             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Middle Churchill River 38 Sr 0.263             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Middle Continental Crust   Eu/Sr 0.005             Major and minor element composition of the Middle Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Middle Continental Crust   Rb/Sr 0.23             Major and minor element composition of the Middle Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Middle Continental Crust   Rb/Sr 0.22             Rudnick & Fountain 1995
Middle Continental Crust 38 Sr 281           ppm Rudnick & Fountain 1995
Middle Continental Crust 38 Sr 282           ppm Major and minor element composition of the Middle Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Middle Continental Crust 38 Sr 282   1       µg/g Major and Minor element compositional estimates of the Middle Continental crust as given by This Study (Rudnick and Gao 2004). Major element oxides are given in wt.% and trace elements abundances are given in ¿g/g or ng/g. Rudnick & Gao 2004
Middle Continental Crust 38 Sr 580           µg/g Major and Minor element compositional estimates of the Middle Continental crust as given by Weaver and Tarney 1984. Major element oxides are given in wt.% and trace elements abundances are given in ¿g/g or ng/g. Rudnick & Gao 2004 Weaver & Tarney 1984
Middle Continental Crust 38 Sr 465           µg/g Major and Minor element compositional estimates of the Middle Continental crust as given by Shaw et al. 1994. Major element oxides are given in wt.% and trace elements abundances are given in ¿g/g or ng/g. Rudnick & Gao 2004 Shaw et al. 1994
Middle Continental Crust 38 Sr 281           µg/g Major and Minor element compositional estimates of the Middle Continental crust as given by Rudnick and Fountain 1995. Major element oxides are given in wt.% and trace elements abundances are given in ¿g/g or ng/g. Rudnick & Gao 2004 Rudnick & Fountain 1995
Middle Continental Crust 38 Sr 283           µg/g Major and Minor element compositional estimates of the Middle Continental crust as given by Gao et al. 1998a. Major element oxides are given in wt.% and trace elements abundances are given in ¿g/g or ng/g. Rudnick & Gao 2004 Gao et al. 1998
Middle Continental Crust   Sr/Nd 12             Rudnick & Fountain 1995
Middle Continental Crust   Sr/Nd 11.28             Major and minor element composition of the Middle Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Middle Proterozoic Upper Crust   Ba/Sr 2.5             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Middle Proterozoic Upper Crust   Ba/Sr 2.4             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Middle Proterozoic Upper Crust   Rb/Sr 0.31             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Middle Proterozoic Upper Crust   Rb/Sr 0.35             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Middle Proterozoic Upper Crust 38 Sr 294           ppm Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Middle Proterozoic Upper Crust 38 Sr 285           ppm Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Mishash Formation 38 Sr 1200         3 ppm Calcareous pelletal and bone phosphorite, associated with limestones and cherts of the Mishash Formation Hamakhtesh haQatan carbonate platform, Israel. P2O5: 22-33%. Uranium is average value of 14 samples of P2O5 in excess of 20%. Chemically Determined, U.S. Geological Survey Lab. Detection Limit = 2 ppm. Altschuller 1980 Mazor 1963
Mississippi River   87Sr/86Sr 0.7102             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Stordal & Wasserburg 1986
Mississippi River 38 Sr 1.712             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Stordal & Wasserburg 1986
Moisie River   87Sr/86Sr 0.7163             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Moisie River 38 Sr 0.137             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Monterey Formation 38 Sr 1900         5 ppm Dark pelletal shaly phosphorites, associated with radiolaran chert and organic-rich bentonic shales of the Monterey formation Tertiary geosyncline in California, U.S.A., P2O5: 15-20%. Detection Limit = 2 ppm. Altschuller 1980
Moore County Eucrite 38 Sr 70           µg/g Trace element compositional data on Moore County Eucrite. Mittlefehldt 2004 Barrat et al. 2000
McCarthy et al. 1973
Moose River   87Sr/86Sr 0.7132             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Moose River 38 Sr 0.479             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
MORB Basaltic Glass   87Sr/86Sr 0.702566             MORB Glass MELPHNX-2-GC083 from the East Pacific Rise near the Clipperton Transform that along with 4 other samples from this region form a coherent liquid line of descent for fractional crystalization from the highest MgO magma. Klein 2004 Lehnert 2000
MORB Basaltic Glass   87Sr/86Sr 0.702505             MORB Glass ODP0142-0864A-001M-003/0-3 from the East Pacific Rise near the Clipperton Transform that along with 4 other samples from this region form a coherent liquid line of descent for fractional crystalization from the highest MgO magma. Klein 2004 Lehnert 2000
MORB Basaltic Glass 38 Sr 133           ppm MORB Glass MELPHNX-2-GC083 from the East Pacific Rise near the Clipperton Transform that along with 4 other samples from this region form a coherent liquid line of descent for fractional crystalization from the highest MgO magma. Klein 2004 Lehnert 2000
MORB Basaltic Glass 38 Sr 134           ppm MORB Glass MELPHNX-2-068-001 from the East Pacific Rise near the Clipperton Transform that along with 4 other samples from this region form a coherent liquid line of descent for fractional crystalization from the highest MgO magma. Klein 2004 Lehnert 2000
MORB Basaltic Glass 38 Sr 122           ppm MORB Glass ODP0142-0864A-001M-003/0-3 from the East Pacific Rise near the Clipperton Transform that along with 4 other samples from this region form a coherent liquid line of descent for fractional crystalization from the highest MgO magma. Klein 2004 Lehnert 2000
MORB Basaltic Glass 38 Sr 120           ppm MORB Glass WASRAI2-057-006 from the East Pacific Rise near the Clipperton Transform that along with 4 other samples from this region form a coherent liquid line of descent for fractional crystalization from the highest MgO magma. Klein 2004 Lehnert 2000
Mozambique   87Sr/86Sr 0.716             Estimated 87Sr/86Sr ratios normalized to a value of 0.7080. Precision is of no importance in measurements here due to the seasonal variation which causes concentration values to fluxuate. Palmer & Edmond 1989
Mozambique 38 Sr 1.2             Estimated Sr concentrations derived from fluvial Ca data due to the precipitation of Sr with calcium carbonates in the sea. Sr concentrations were determined using standard mass spectrometric techniques. Palmer & Edmond 1989
Murchison River   87Sr/86Sr 0.728             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
Murchison River 38 Sr 12.326             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
Murray River   87Sr/86Sr 0.7108             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
Murray River 38 Sr 2.454             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
N-MORB   87Sr/86Sr 0.70264             Average isotopic values of N-MORB taken from varying sources for comparison to 735B gabbro isotopic composition analyzed in Hart et al. 1999. Hart et al. 1999 Hofmann 1988
Ito et al. 1987
Smith et al. 1995
Hauri & Hart 1997
N-MORB   87Sr/86Sr 0.7029             Analyses of Kolbeinsey Ridge N-MORB which is a high F and high P MORB. These analyses were taken from the Ridge PetDB for sample POS0158-404-00 with major and trace elements derived from whole rock powders, Pb, Sr, Rb and isotope ratios derived from glasses. Klein 2004 Lehnert 2000
N-MORB   87Sr/86Sr 0.7025             Compositie analyses on N-MORB glasses from the Mid-Atlantic Ridge as reported in the RidgePetDB database. Major and most trace elements for this N-type MORB are taken from the sample EW19309-012-00. Klein 2004 Lehnert 2000
N-MORB   87Sr/86Sr 0.7026             Analyses on N-MORB from the Northern section of the East Pacific Rise as reported by Niu et al. 1999. Klein 2004 Niu et al. 1999
N-MORB   87Sr/86Sr 0.7025             Analyses on N-MORB from the Mid-Cayman Rise. Glass compositions reported in ReidgePetDB for sample KNO0054-027-005 then augmented with BA, V and Y data on a similar sample reported by Thompson et al. 1980 and the sole isotopic analysis of a Mid-Cayman rise basalt from RidgePetDB. Klein 2004 Thompson et al. 1980
N-MORB 38 Sr 68           ppm Analyses of Kolbeinsey Ridge N-MORB which is a high F and high P MORB. These analyses were taken from the Ridge PetDB for sample POS0158-404-00 with major and trace elements derived from whole rock powders, Pb, Sr, Rb and isotope ratios derived from glasses. Klein 2004 Lehnert 2000
N-MORB 38 Sr 142           ppm Analyses on N-MORB from the Northern section of the East Pacific Rise as reported by Niu et al. 1999. Klein 2004 Niu et al. 1999
N-MORB 38 Sr 94           ppm Compositie analyses on N-MORB glasses from the Mid-Atlantic Ridge as reported in the RidgePetDB database. Major and most trace elements for this N-type MORB are taken from the sample EW19309-012-00. Klein 2004 Lehnert 2000
N-MORB 38 Sr 188           ppm Analyses on N-MORB from the Mid-Cayman Rise. Glass compositions reported in ReidgePetDB for sample KNO0054-027-005 then augmented with BA, V and Y data on a similar sample reported by Thompson et al. 1980 and the sole isotopic analysis of a Mid-Cayman rise basalt from RidgePetDB. Klein 2004 Thompson et al. 1980
N-MORB 38 Sr 113.2   27.28     26 ppm Trace element average abundances for N-MORB as taken from analysis of 26 fresh MORB glasses defined N-type by the light-REE depletion.  These values were originally measured by Jochum et al. 1988. All standard deviations were calculated from percent values given in Hofmann 1988 (Table 1). Hofmann 1988 Jochum et al. 1988
N-MORB 38 Sr 113.2           ppm Values of N-MORB taken from varying sources for comparison to 735B gabbro composition analyzed in Hart et al. 1999. Hart et al. 1999 Hofmann 1988
Ito et al. 1987
Smith et al. 1995
Hauri & Hart 1997
N-MORB   Sr/Sr* 0.626             Elemental ratio values of N-MORB taken from varying sources for comparison to 735B gabbro composition analyzed in Hart et al. 1999. Hart et al. 1999 Hofmann 1988
Ito et al. 1987
Smith et al. 1995
Hauri & Hart 1997
Nakhla Meteorite 38 Sr 59   10       ppm Mars elemental abundances as given by Nakhla meteorite (nakhlite) as given in Lodders 1988. McSween, Jr. 2004 Lodders 1998
Nankai Trench 38 Sr 165           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Nanno Ooze 38 Sr 1326         2 ppm Based on the nanno ooze of the nearby Site 320 (Hole et al., 1984) since no geochemical data exists for Site 321. Plank & Langmuir 1998
Nano Ooze 38 Sr 879         4 ppm Average of 4 nanno oozes after Peate et al. (1997) that have been diluted by the percentages of pure CaCO3 in the drill cores. The biogenic diluent is 28% CaCO3 in this 114 m deep unit. The average was calculated after renormalizing the analyses on a CaCO3-free basis followed by the dilution appropriate for these drill cores. Core estimates have been weigthed by the height of the drilled intervals. Plank & Langmuir 1998
Nass River   87Sr/86Sr 0.7054             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Nass River 38 Sr 1.107             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Natashquan River   87Sr/86Sr 0.7131             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Natashquan River 38 Sr 0.137             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Nelson River   87Sr/86Sr 0.7146             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Nelson River 38 Sr 0.856             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
New Hebrides Islands   87Sr/86Sr 0.70392         4   Average major and trace element values for New Hebrides Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
New Hebrides Islands 38 Sr 499.81         21 ppm Average major and trace element values for New Hebrides Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Niger River   87Sr/86Sr 0.714             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Niger River 38 Sr 0.25             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Niger River Particulates 38 Sr 40           µg/g Elemental particulates in major African rivers. Averages for major elements are weighted according to the suspended load prior to the construction of dams, for trace elements the average contents are mean values. Martin & Meybeck 1979
North American Shale Composite (NASC) 38 Sr 142           ppm Major oxide and minor element compositions for North American Shale Composite. No source reference found in text.  Condie 1993
North Antilles Trench   87Sr/86Sr 0.71788             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 2 or high. Plank & Langmuir 1998
North Antilles Trench 38 Sr 111           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 2 or high. Plank & Langmuir 1998
North Qinling Belt in China 38 Sr 289           ppm Compostional estimate of the North Qinling orogenic belt. Includes sedimentary carbonates. Gao et al. 1998
North Qinling Belt in China 38 Sr 296           ppm Compostional estimate of the North Qinling orogenic belt. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
North Qinling Belt in China 38 Sr 319           ppm Compostional estimate of the Northern Qinling orogenic belt. Average compostion of granulite terrains and calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
North Qinling Belt in China 38 Sr 493           ppm Compostional estimate of the North Qinling orogenic belt. Average composition of granulite terrains. Gao et al. 1998
North Qinling Belt in China 38 Sr 209           ppm Compostional estimate of the North Qinling orogenic belt. The middle crust of the North Qinling belt is assumed to consist of the underthrusted South Qinling middle crust (see text for explanation). Gao et al. 1998
Northern Blake Plateau Phosphorites 38 Sr 0.18         8 wt%ox Composition of Blake plateau phosphorite and comparable deposits. Data was taken from analyses of composites of 8 phosphorites. Manheim et al. 1980
Northern Churchill River   87Sr/86Sr 0.7176             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Northern Churchill River 38 Sr 0.08             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Nottaway River   87Sr/86Sr 0.7186             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Nottaway River 38 Sr 0.126             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Nuevo Laredo Eucrite 38 Sr 80           µg/g Trace element compositional data on Nuevo Laredo Eucrites. Mittlefehldt 2004 Warren & Jerde 1987
Oceanic Crust 38 Sr 134           ppm Minor and trace element averages for the Oceanic crust based on Hofmann 1988 and Wedepohl 2012 Wedepohl & Hartmann 1994 Wedepohl 1981
Oceanic Crust 38 Sr 113           ppm Minor and trace element averages for the Oceanic crust based on Hofmann 1988 and Wedepohl 2011 Wedepohl & Hartmann 1994 Hofmann 1988
Oceanic Plateaus   87Sr/86Sr 0.19             Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 750, sample 17-3 and 23-26.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
Oceanic Plateaus   87Sr/86Sr 0.703041             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Gorgona locality, sample GOR160. Values taken from Aitken & Echeverria, Dupre & Echeverria and Jochum et al. 1991. Kerr 2004 Aitken & Echeverria 1984
Dupre & Echeverria 1984
Jochum et al. 1991
Oceanic Plateaus   87Sr/86Sr 0.02             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Gorgona locality, sample GOR117. Values taken from Aitken & Echeverria, Dupre & Echeverria and Jochum et al. 1991. Kerr 2004 Aitken & Echeverria 1984
Dupre & Echeverria 1984
Jochum et al. 1991
Oceanic Plateaus   87Sr/86Sr 0.703546             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau DSDP site 150, sample 11-2 and 63-67. Values taken from Hauff et al. 2000b. Kerr 2004 Hauff et al. 2000
Oceanic Plateaus   87Sr/86Sr 0.72             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Ecuador locality, sample EQ1. Values taken from Reynaud et al. 1999. Kerr 2004 Reynaud et al. 1999
Oceanic Plateaus   87Sr/86Sr 0.706165             Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 750, sample 17-3 and 23-26.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
Oceanic Plateaus   87Sr/86Sr 1.95             Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 738, sample 34-1 and 88-92. Values taken from Mahoney et al. 1995. Kerr 2004 Mahoney et al. 1995
Oceanic Plateaus   87Sr/86Sr 0.703283             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Gorgona locality, sample GOR117. Values taken from Aitken & Echeverria, Dupre & Echeverria and Jochum et al. 1991. Kerr 2004 Aitken & Echeverria 1984
Dupre & Echeverria 1984
Jochum et al. 1991
Oceanic Plateaus   87Sr/86Sr 0.7032             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Ecuador locality, sample EQ1. Values taken from Reynaud et al. 1999. Kerr 2004 Reynaud et al. 1999
Oceanic Plateaus   87Sr/86Sr 0.70973             Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 738, sample 34-1 and 88-92. Values taken from Mahoney et al. 1995. Kerr 2004 Mahoney et al. 1995
Oceanic Plateaus   87Sr/86Sr 0.19             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Gorgona locality, sample GOR94-35. Values taken from unpublished information. Kerr 2004
Oceanic Plateaus   87Sr/86Sr 0.13             Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau ODP site 807, sample 75-4 and 46-48. Values taken from Mahoney et al. 1993a. Kerr 2004 Mahoney et al. 1993
Oceanic Plateaus   87Sr/86Sr 0.704767             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Gorgona locality, sample GOR94-35. Values taken from unpublished information. Kerr 2004
Oceanic Plateaus   87Sr/86Sr 0.28             Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau ODP site 807, sample 88-3 and 76-79. Values taken from Mahoney et al. 1993a. Kerr 2004 Mahoney et al. 1993
Oceanic Plateaus   87Sr/86Sr 0.15             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Colombia locality, sample SDB18. Values taken from Kerr et al. 1997 and Hauff et al. 2000b. Kerr 2004 Kerr et al. 1997
Hauff et al. 2000
Oceanic Plateaus   87Sr/86Sr 0.70433             Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau ODP site 807, sample 75-4 and 46-48. Values taken from Mahoney et al. 1993a. Kerr 2004 Mahoney et al. 1993
Oceanic Plateaus   87Sr/86Sr 0.70338             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Colombia locality, sample SDB18. Values taken from Kerr et al. 1997 and Hauff et al. 2000b. Kerr 2004 Kerr et al. 1997
Hauff et al. 2000
Oceanic Plateaus   87Sr/86Sr 0.70356             Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau ODP site 807, sample 88-3 and 76-79. Values taken from Mahoney et al. 1993a. Kerr 2004 Mahoney et al. 1993
Oceanic Plateaus   87Sr/86Sr 0.15             Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau Santa Isabel locality, sample I96. Values taken from Tejada et al. 1996. Kerr 2004 Tejada et al. 1996
Oceanic Plateaus   87Sr/86Sr 0.07             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Colombia locality, sample VIJ1. Values taken from Kerr et al. 1997 and Hauff et al. 2000b. Kerr 2004 Kerr et al. 1997
Hauff et al. 2000
Oceanic Plateaus   87Sr/86Sr 0.703207             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Colombia locality, sample VIJ1. Values taken from Kerr et al. 1997 and Hauff et al. 2000b. Kerr 2004 Kerr et al. 1997
Hauff et al. 2000
Oceanic Plateaus   87Sr/86Sr 0.70369             Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau Santa Isabel locality, sample I96. Values taken from Tejada et al. 1996. Kerr 2004 Tejada et al. 1996
Oceanic Plateaus   87Sr/86Sr 0.15             Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau Maliata locality, sample SG1. Values taken from Tejada et al. 2002. Kerr 2004 Tejada et al. 2002
Oceanic Plateaus   87Sr/86Sr 0.08             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Colombia locality, sample COL472. Values taken from Kerr et al. 2002. Kerr 2004 Kerr et al. 2002
Oceanic Plateaus   87Sr/86Sr 0.513197             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Colombia locality, sample COL472. Values taken from Kerr et al. 2002. Kerr 2004 Kerr et al. 2002
Oceanic Plateaus   87Sr/86Sr 2             Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 747, sample 16-5 and 103-6.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
Oceanic Plateaus   87Sr/86Sr 0.70404             Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau Maliata locality, sample SG1. Values taken from Tejada et al. 2002. Kerr 2004 Tejada et al. 2002
Oceanic Plateaus   87Sr/86Sr 0.26             Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau Maliata locality, sample ML407. Values taken from Tejada et al. 2002. Kerr 2004 Tejada et al. 2002
Oceanic Plateaus   87Sr/86Sr 0.02             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Curacao locality, sample CUR14. Values taken from Kerr et al. 1996b. Kerr 2004 Kerr et al. 1996
Oceanic Plateaus   87Sr/86Sr 0.705783             Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 747, sample 16-5 and 103-6.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
Oceanic Plateaus   87Sr/86Sr 0.702961             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Curacao locality, sample CUR14. Values taken from Kerr et al. 1996b. Kerr 2004 Kerr et al. 1996
Oceanic Plateaus   87Sr/86Sr 0.03             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Curacaolocality, sample CUR20. Values taken from Kerr et al. 1996b. Kerr 2004 Kerr et al. 1996
Oceanic Plateaus   87Sr/86Sr 0.705319             Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 748, sample 79-6 and 90-4.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
Oceanic Plateaus   87Sr/86Sr 0.54             Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 749, sample 15-5 and 125-7.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
Oceanic Plateaus   87Sr/86Sr 0.70413             Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau Maliata locality, sample ML407. Values taken from Tejada et al. 2002. Kerr 2004 Tejada et al. 2002
Oceanic Plateaus   87Sr/86Sr 0.56             Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 748, sample 79-6 and 90-4.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
Oceanic Plateaus   87Sr/86Sr 0.06             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Gorgona locality, sample GOR160. Values taken from Aitken & Echeverria, Dupre & Echeverria and Jochum et al. 1991. Kerr 2004 Aitken & Echeverria 1984
Dupre & Echeverria 1984
Jochum et al. 1991
Oceanic Plateaus   87Sr/86Sr 0.703215             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Curacaolocality, sample CUR20. Values taken from Kerr et al. 1996b. Kerr 2004 Kerr et al. 1996
Oceanic Plateaus   87Sr/86Sr 0.13             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau DSDP site 150, sample 11-2 and 63-67. Values taken from Hauff et al. 2000b. Kerr 2004 Hauff et al. 2000
Oceanic Plateaus   87Sr/86Sr 0.70426             Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 749, sample 15-5 and 125-7.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
Oceanic Plateaus 38 Sr 273           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 738, sample 34-1 and 88-92. Values taken from Mahoney et al. 1995. Kerr 2004 Mahoney et al. 1995
Oceanic Plateaus 38 Sr 16           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau DSDP site 150, sample 11-2 and 63-67. Values taken from Hauff et al. 2000b. Kerr 2004 Hauff et al. 2000
Oceanic Plateaus 38 Sr 15           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Ecuador locality, sample EQ1. Values taken from Reynaud et al. 1999. Kerr 2004 Reynaud et al. 1999
Oceanic Plateaus 38 Sr 193           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 750, sample 17-3 and 23-26.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
Oceanic Plateaus 38 Sr 34           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Gorgona locality, sample GOR94-35. Values taken from unpublished information. Kerr 2004
Oceanic Plateaus 38 Sr 174           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau ODP site 807, sample 75-4 and 46-48. Values taken from Mahoney et al. 1993a. Kerr 2004 Mahoney et al. 1993
Oceanic Plateaus 38 Sr 107           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Gorgona locality, sample GOR117. Values taken from Aitken & Echeverria, Dupre & Echeverria and Jochum et al. 1991. Kerr 2004 Aitken & Echeverria 1984
Dupre & Echeverria 1984
Jochum et al. 1991
Oceanic Plateaus 38 Sr 214           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 749, sample 15-5 and 125-7.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
Oceanic Plateaus 38 Sr 64           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Gorgona locality, sample GOR160. Values taken from Aitken & Echeverria, Dupre & Echeverria and Jochum et al. 1991. Kerr 2004 Aitken & Echeverria 1984
Dupre & Echeverria 1984
Jochum et al. 1991
Oceanic Plateaus 38 Sr 1131           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 748, sample 79-6 and 90-4.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
Oceanic Plateaus 38 Sr 11           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Curacaolocality, sample CUR20. Values taken from Kerr et al. 1996b. Kerr 2004 Kerr et al. 1996
Oceanic Plateaus 38 Sr 100           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau Maliata locality, sample ML407. Values taken from Tejada et al. 2002. Kerr 2004 Tejada et al. 2002
Oceanic Plateaus 38 Sr 6           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Curacao locality, sample CUR14. Values taken from Kerr et al. 1996b. Kerr 2004 Kerr et al. 1996
Oceanic Plateaus 38 Sr 234           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 747, sample 16-5 and 103-6.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
Oceanic Plateaus 38 Sr 398           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Colombia locality, sample COL472. Values taken from Kerr et al. 2002. Kerr 2004 Kerr et al. 2002
Oceanic Plateaus 38 Sr 108           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau Maliata locality, sample SG1. Values taken from Tejada et al. 2002. Kerr 2004 Tejada et al. 2002
Oceanic Plateaus 38 Sr 115           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau Santa Isabel locality, sample I96. Values taken from Tejada et al. 1996. Kerr 2004 Tejada et al. 1996
Oceanic Plateaus 38 Sr 89           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Colombia locality, sample VIJ1. Values taken from Kerr et al. 1997 and Hauff et al. 2000b. Kerr 2004 Kerr et al. 1997
Hauff et al. 2000
Oceanic Plateaus 38 Sr 156           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Colombia locality, sample SDB18. Values taken from Kerr et al. 1997 and Hauff et al. 2000b. Kerr 2004 Kerr et al. 1997
Hauff et al. 2000
Oceanic Plateaus 38 Sr 107           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau ODP site 807, sample 88-3 and 76-79. Values taken from Mahoney et al. 1993a. Kerr 2004 Mahoney et al. 1993
Oceans Deep water 38 Sr 7.72           mg/kg Deep ocean water is ~1,000 m depth. Where possible data is from the Pacific ocean that shows the greates variations; otherwhise data is from the Atlantic ocean. Depth = 700 m. Quinby-Hunt & Turekian 1983 Brass & Turekian 1974
Oceans Surface water 38 Sr 7.404           mg/kg Surface or near-surface concentratio. Where possible data is from the Pacific ocean that shows the greates variations; otherwhise data is from the Atlantic ocean. Depth = 10 m. Quinby-Hunt & Turekian 1983 Brass & Turekian 1974
ODP Site 735   87Rb/86Sr 0.006             Average of 22 composite strip samples as defined in Table 1. Hart et al. 1999
ODP Site 735   87Sr/86Sr 0.702921 0.7029       22   Average of 22 composite strip samples as defined in Table 1. Hart et al. 1999
ODP Site 735 38 Sr 157.8 161.7       22 ppm Average of 22 composite strip samples as defined in Table 1.