GERM Reservoir Database
Development and Maintenance by the EarthRef.org Database Team

GERM Database Search Results        
Reservoir Z Element Value Median SD Low High N Unit Info Reference Source(s)
Continental Intraplate Xenoliths   Rb/Sr 0.0001             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Continental Intraplate Xenoliths   Rb/Sr 0.0001             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Eggins et al. 1998
Continental Intraplate Xenoliths   Rb/Sr 0.0001             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov 1996
Continental Intraplate Xenoliths   Rb/Sr 0.0002             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Eggins et al. 1998
Continental Intraplate Xenoliths   Rb/Sr 0.0009             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov 1996
Cratonic Xenoliths   Rb/Sr 0.0013             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gergoire et al. 2002
Peninsular Range Batholith   Eu/Sr 0.0017             Analysis of Archean Calc-Alkaline Type 1 & 2 Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Sylvester 1995
Tonalites-Trondhjemites-Granodiorites   Eu/Sr 0.002         355   Analysis of Archean Tonalite-Trondhjemite-Granodiorite (TTG) represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Martin 1995
Phosphoria Formation 38 Sr 0.003         61 ppm Average phosphorite of Phosphoria formation.  Modal values used for minor elements. Gulbrandsen 1966
Upper Continental Crust   Eu/Sr 0.0031             Major and minor element composition of the Upper Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Granites   Eu/Sr 0.0032             Analysis of Archean Calc-Alkaline Type 1 & 2 Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Sylvester 1995
Lower Continental Crust   Eu/Sr 0.0032             Major and minor element composition of the Lower Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Depleted-Depleted MORB Mantle   Rb/Sr 0.0033             Rubidium/Strontium ratio of Depleted Depleted MORB Mantle which is based off ratios that are 2s depleted from the average MORB value. Present-day parent daughter ratios, calculated with a continuous depletion model starting 3 Ga. Workman & Hart 2005
Continental Crust   Eu/Sr 0.0034             Major and minor element composition of the Bulk Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Australian Granite   Eu/Sr 0.0035         8   Analysis of Oceanic Arc Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Whalen 1985
Granites   Eu/Sr 0.0039         8   Analysis of Glenelg River Complex Leucogranite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Kemp 2001
Continental Intraplate Xenoliths   Rb/Sr 0.005             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Johnson et al. 1996
Middle Continental Crust   Eu/Sr 0.005             Major and minor element composition of the Middle Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Australian Granite   Eu/Sr 0.0051         13   Analysis of Himalayan Leucogranite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Inger & Harris 1993
ODP Site 735   87Rb/86Sr 0.006             Average of 22 composite strip samples as defined in Table 1. Hart et al. 1999
Depleted MORB Mantle   Rb/Sr 0.0065             Present-day parent daughter ratios of Depleted MORB Mantle (DMM), calculated with a continuous depletion model starting 3 Ga. Workman & Hart 2005
Enriched-Depleted MORB Mantle   Rb/Sr 0.0111             Rubidium/Strontium ratio of Enriched Depleted MORB Mantle which is based off ratios that are 2s enriched over the average MORB value. Present-day parent daughter ratios, calculated with a continuous depletion model starting 3 Ga. Workman & Hart 2005
Enriched-Depleted MORB Mantle   Rb/Sr 0.0111             Rubidium/Strontium ratio of Enriched Depleted MORB Mantle which is based off ratios that are 2s enriched over the average MORB value. Present-day parent daughter ratios, calculated with a continuous depletion model starting 3 Ga. Workman & Hart 2005
Continental Intraplate Xenoliths   Rb/Sr 0.014             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov et al. 1997
Continental Intraplate Xenoliths 38 Sr 0.018           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Granulites   Rb/Sr 0.019             Lower crust composition based on the estimates of Weaver and Tarney 1982. The lower crust itself was found to have the composition of Archaean Lewisian granulite facies gneiss. Weaver & Tarney 1984 Weaver & Tarney 1982
Continental Intraplate Xenoliths   Rb/Sr 0.0199             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov 1996
Oceanic Plateaus   87Sr/86Sr 0.02             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Gorgona locality, sample GOR117. Values taken from Aitken & Echeverria, Dupre & Echeverria and Jochum et al. 1991. Kerr 2004 Aitken & Echeverria 1984
Dupre & Echeverria 1984
Jochum et al. 1991
Oceanic Plateaus   87Sr/86Sr 0.02             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Curacao locality, sample CUR14. Values taken from Kerr et al. 1996b. Kerr 2004 Kerr et al. 1996
Depleted Mantle   87Rb/86Sr 0.022             Present day depleted mantle trace elements are 10% of N-MORB abundances. Isotopic composition of the depleted mantle was chosen to lie near the depleted end of the Atlantic-Pacific MORB array. Parent/daughter ratios of the isotopic systems were calculated from the listed trace element and isotope data. Rehkamper & Hofmann 1997
Primitive Mantle   Rb/Sr 0.022             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Shaw 1972
Continental Intraplate Xenoliths   Rb/Sr 0.0222             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Solid Earth   87Rb/86Sr 0.024             Parent/daughter ratios of Depleted MORB mantle (DMM) from a number of different sources. Ratio values used as models for comparison to ratio values from Oceanic Gabbroic composites. Hart et al. 1999 Allegre et al. 1983
Continental Intraplate Xenoliths 38 Sr 0.025           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Eggins et al. 1998
Primitive Mantle   Rb/Sr 0.025             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Smith 1977
Australian Granite   Eu/Sr 0.0254             Analysis of A-type Lachlan Fold Belt Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Collins et al. 1982
Primitive Mantle   Rb/Sr 0.029             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Jacobsen & Wasserburg 1979
Primitive Mantle   Rb/Sr 0.029             Abundances for K, Rb, Cs and Ba according to analysis performed by Hofmann and White 1983.  Abundance values found to be in agreement with published values for these same elements, aside from Cs, which was far from previously published data.  Hofmann & White 1983
Primitive Mantle   Rb/Sr 0.029             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Jagoutz et al. 1979
Lower Continental Crust   Rb/Sr 0.03             Major and minor element composition of the Lower Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Oceanic Plateaus   87Sr/86Sr 0.03             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Curacaolocality, sample CUR20. Values taken from Kerr et al. 1996b. Kerr 2004 Kerr et al. 1996
Primitive Mantle   Rb/Sr 0.03             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Sun & Nesbitt 1977
Primitive Mantle   Rb/Sr 0.03             Element ratios from the Primitive Mantle as given by Hofmann 1988. Gao et al. 1998 Hofmann 1988
Retort Phosphatic Shale Member 38 Sr 0.03         20 ppm Average phosphorite of Retort Phosphatic Shale Member of Phosphoria formation.  Modal values used for minor elements. Gulbrandsen 1966
Silicate Earth   Rb/Sr 0.0307             Present-day parent/daughter ratios, calculated with a continuous depletion model starting 3 Ga. Workman & Hart 2005
Primitive Mantle   Rb/Sr 0.032             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Ganapathy & Anders 1974
Lower Continental Crust   Rb/Sr 0.033             Rudnick & Fountain 1995
Continental Intraplate Xenoliths   Rb/Sr 0.034             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gregoire et al. 2002
Continental Intraplate Xenoliths 38 Sr 0.034           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov 1996
Primitive Mantle   Rb/Sr 0.035             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Larimer 1971
Primitive Mantle   Rb/Sr 0.035             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Ringwood & Kesson 1977
Cratonic Xenoliths   Rb/Sr 0.037             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gregoire et al. 2002
Continental Intraplate Xenoliths   Rb/Sr 0.0388             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Eggins et al. 1998
Australian Granite   Sr/Nd 0.06         6   Analysis of A-type Padthaway Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Turner et al. 1992
Oceanic Plateaus   87Sr/86Sr 0.06             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Gorgona locality, sample GOR160. Values taken from Aitken & Echeverria, Dupre & Echeverria and Jochum et al. 1991. Kerr 2004 Aitken & Echeverria 1984
Dupre & Echeverria 1984
Jochum et al. 1991
Australian Granite   Eu/Sr 0.0614         6   Analysis of A-type Padthaway Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Turner et al. 1992
Cratonic Xenoliths   Rb/Sr 0.068             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gregoire et al. 2002
Eastmain River 38 Sr 0.068             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Australian Granite   Rb/Sr 0.07         8   Analysis of Oceanic Arc Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Whalen 1985
Oceanic Plateaus   87Sr/86Sr 0.07             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Colombia locality, sample VIJ1. Values taken from Kerr et al. 1997 and Hauff et al. 2000b. Kerr 2004 Kerr et al. 1997
Hauff et al. 2000
Continental Intraplate Xenoliths 38 Sr 0.076           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Granulitic Xenolites   Rb/Sr 0.078 0.014       237   Average of granulite facies xenoliths. Rudnick & Presper 1990
Northern Churchill River 38 Sr 0.08             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Oceanic Plateaus   87Sr/86Sr 0.08             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Colombia locality, sample COL472. Values taken from Kerr et al. 2002. Kerr 2004 Kerr et al. 2002
Rupert River 38 Sr 0.08             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Solid Earth   87Rb/86Sr 0.0892             Parent/daughter ratios of Bulk Earth from a number of different sources. Ratio values used as models for comparison to ratio values from Oceanic Gabbroic composites. Hart et al. 1999 Allegre et al. 1983
Arnaud River 38 Sr 0.091             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Back River 38 Sr 0.091             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Mead Peak Phosphatic Shale Member 38 Sr 0.1         41 ppm Average phosphorite of Meade Peak Phosphatic Shale member of Phosphoria Formation. Modal values used for minor elements. Gulbrandsen 1966
Phosphoria Formation 38 Sr 0.1         61 ppm Average phosphorite of Phosphoria formation.  Modal values used for minor elements. Gulbrandsen 1966
Tapajos River 38 Sr 0.1             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Aux Outardes River 38 Sr 0.103             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Continental Crust   Rb/Sr 0.105             Average crustal composition taken from Taylor and McLennan 1981. These values are referred to as the Andesite model and as compared to the values given by this study (Weaver & Tarney 1984) differs in only a handful of elements and ratios. The Andesite model is significantly less siliceous though, and also less correspondant to previous estimates of the Continental Crust. Weaver & Tarney 1984 Taylor & McLennan 1981
Andean Andesites   Rb/Sr 0.11             Elemental ratios of the post Archaean Middle and Lower continental crust which is found to be that of an average continental margin orogenic andesite. Weaver & Tarney 1984 Bailey 1981
Aux Feuilles River 38 Sr 0.114             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Tonalites-Trondhjemites-Granodiorites   Rb/Sr 0.12         355   Analysis of Archean Tonalite-Trondhjemite-Granodiorite (TTG) represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Martin 1995
Continental Crust   Rb/Sr 0.121             In calculating the average crustal composition it is assumed that the proportions of upper, middle and lower crust are 2:1:3. The upper crustal average from Taylor & McLennan (1981) is presumed to be representative of upper crust of all geological ages. The middel and lower crust are presumed to be composed of 75% Archean material and 25% post-Archean material represented by average orogenic andesites. Thus the relative weightings for upper crust, Archean middle crust, Archean lower crust and post-Archean middle and lower crust become 8:3:9:4. Weaver & Tarney 1984
Nottaway River 38 Sr 0.126             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
St. Maurice River 38 Sr 0.126             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Archean Amphibolites   Rb/Sr 0.128             Middle crust compositon based on Weaver and Tarney 1981. According to this study the middle crustal composition is that of Archean Lewisian amphibolite facies gneisses. Weaver & Tarney 1984 Weaver & Tarney 1981
Continental Intraplate Xenoliths 38 Sr 0.129           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Eggins et al. 1998
Oceanic Plateaus   87Sr/86Sr 0.13             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau DSDP site 150, sample 11-2 and 63-67. Values taken from Hauff et al. 2000b. Kerr 2004 Hauff et al. 2000
Oceanic Plateaus   87Sr/86Sr 0.13             Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau ODP site 807, sample 75-4 and 46-48. Values taken from Mahoney et al. 1993a. Kerr 2004 Mahoney et al. 1993
La Grande River 38 Sr 0.137             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Manicougan River 38 Sr 0.137             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Moisie River 38 Sr 0.137             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Natashquan River 38 Sr 0.137             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Central East China Craton   Rb/Sr 0.14             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith using the median values of Rudnick & Fountain (1995). Gao et al. 1998
Continental Intraplate Xenoliths   Rb/Sr 0.148             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov et al. 1997
Petit Mecatina River 38 Sr 0.148             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Continental Crust   Rb/Sr 0.15             Major and minor element composition of the Bulk Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Oceanic Plateaus   87Sr/86Sr 0.15             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Colombia locality, sample SDB18. Values taken from Kerr et al. 1997 and Hauff et al. 2000b. Kerr 2004 Kerr et al. 1997
Hauff et al. 2000
Oceanic Plateaus   87Sr/86Sr 0.15             Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau Santa Isabel locality, sample I96. Values taken from Tejada et al. 1996. Kerr 2004 Tejada et al. 1996
Oceanic Plateaus   87Sr/86Sr 0.15             Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau Maliata locality, sample SG1. Values taken from Tejada et al. 2002. Kerr 2004 Tejada et al. 2002
Xingu River 38 Sr 0.156             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
A La Baleine River 38 Sr 0.16             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Island Arcs   Rb/Sr 0.16         323   Analysis of Continental Arc Granite from the Peninsula Range Batholith represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Silver & Chappell 1998
Thelon River 38 Sr 0.16             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Koksoak River 38 Sr 0.171             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Central East China Craton   Rb/Sr 0.18             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Continental Crust   Rb/Sr 0.18             Rudnick & Fountain 1995
Northern Blake Plateau Phosphorites 38 Sr 0.18         8 wt%ox Composition of Blake plateau phosphorite and comparable deposits. Data was taken from analyses of composites of 8 phosphorites. Manheim et al. 1980
Cratonic Xenoliths 38 Sr 0.186           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004
Oceanic Plateaus   87Sr/86Sr 0.19             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Gorgona locality, sample GOR94-35. Values taken from unpublished information. Kerr 2004
Oceanic Plateaus   87Sr/86Sr 0.19             Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 750, sample 17-3 and 23-26.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
Orinoco River 38 Sr 0.21             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Central East China Craton   Rb/Sr 0.22             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith using the median values of Rudnick & Fountain (1995). Gao et al. 1998
Central East China Craton   Rb/Sr 0.22             Compostional estimate of the entire Central East China province. Gao et al. 1998
Middle Continental Crust   Rb/Sr 0.22             Rudnick & Fountain 1995
Middle Continental Crust   Rb/Sr 0.23             Major and minor element composition of the Middle Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Central East China Craton   Rb/Sr 0.24             Compostional estimate of the entire Central East China province. Gao et al. 1998
Central East China Craton   Rb/Sr 0.24             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Granites   Rb/Sr 0.24             Analysis of Archean Calc-Alkaline Type 1 & 2 Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Sylvester 1995
Late Archean Upper Crust   Rb/Sr 0.24             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Primitive Mantle   Rb/Sr 0.24             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone.  Hofmann & White 1983 Palme et al. 1981
Early Archean Upper Crust   Rb/Sr 0.25             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Niger River 38 Sr 0.25             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Upper Continental Crust   Rb/Sr 0.25             Major and minor element composition of the Upper Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Winisk River 38 Sr 0.251             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Sao Francisco River 38 Sr 0.253             Estimated Sr concentrations derived from fluvial Ca data due to the precipitation of Sr with calcium carbonates in the sea. Sr concentrations were determined using standard mass spectrometric techniques. Palmer & Edmond 1989
Tocantins River 38 Sr 0.253             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Central East China Craton   Rb/Sr 0.26             Compostional estimate of the entire Central East China province. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Oceanic Plateaus   87Sr/86Sr 0.26             Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau Maliata locality, sample ML407. Values taken from Tejada et al. 2002. Kerr 2004 Tejada et al. 2002
Kazan River 38 Sr 0.263             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Middle Churchill River 38 Sr 0.263             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Saguenay River 38 Sr 0.263             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Continental Intraplate Xenoliths 38 Sr 0.27           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Peninsular Range Batholith   Rb/Sr 0.27             Analysis of Archean Calc-Alkaline Type 1 & 2 Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Sylvester 1995
Cratonic Xenoliths 38 Sr 0.272           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004
Early Archean Upper Crust   Rb/Sr 0.28             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Archean Upper Crust   Rb/Sr 0.28             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Oceanic Plateaus   87Sr/86Sr 0.28             Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau ODP site 807, sample 88-3 and 76-79. Values taken from Mahoney et al. 1993a. Kerr 2004 Mahoney et al. 1993
Upper Continental Crust   Rb/Sr 0.29             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. The UCC is calculated from data in Tables 4-6 with a weight ratio for Archean:Proterozoic:Phanerozoic = 50:30:20 that can be further divided into 10% Early and 90% Late Archean; 50% Early and 25% Middle and 25% Late Proterozoic; and 50% Paleozoic and 50% Mesozoic-Cenozoic. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Attawapiskat River 38 Sr 0.297             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Indonesia 38 Sr 0.3             Estimated Sr concentrations derived from fluvial Ca data due to the precipitation of Sr with calcium carbonates in the sea. Sr concentrations were determined using standard mass spectrometric techniques. Palmer & Edmond 1989
Central East China Craton   Rb/Sr 0.31             Compostional estimate of the entire Central East China province. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Middle Proterozoic Upper Crust   Rb/Sr 0.31             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Congo River 38 Sr 0.313             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Upper Continental Crust   Rb/Sr 0.314             Upper crust composition based on Taylor and McLennan 1981. Weaver & Tarney 1984 Taylor & McLennan 1981
Albany River 38 Sr 0.32             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Amazon River 38 Sr 0.32             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Early Proterozoic Upper Crust   Rb/Sr 0.32             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Upper Continental Crust   Rb/Sr 0.32             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. In this model 5 and 10 km extra crust is added to the present-day upper-crustal layer for Phanerozoic and Precambrian areas, respectively. The UCC is calculated from data in Tables 4-6 with a weight ratio for Archean:Proterozoic:Phanerozoic = 50:30:20 that can be further divided into 10% Early and 90% Late Archean; 50% Early and 25% Middle and 25% Late Proterozoic; and 50% Paleozoic and 50% Mesozoic-Cenozoic. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Upper Continental Crust   Rb/Sr 0.32             Rudnick & Fountain 1995
Late Proterozoic Upper Crust   Rb/Sr 0.33             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Paleozoic Upper Crust   Rb/Sr 0.34             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Mesozoic & Cenozoic Upper Crust   Rb/Sr 0.35             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Middle Proterozoic Upper Crust   Rb/Sr 0.35             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Proterozoic Upper Crust   Rb/Sr 0.36             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Proterozoic Upper Crust   Rb/Sr 0.36             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Severn River 38 Sr 0.388             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Mesozoic & Cenozoic Upper Crust   Rb/Sr 0.39             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Paleozoic Upper Crust   Rb/Sr 0.39             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Cratonic Xenoliths 38 Sr 0.406           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004
Hayes River 38 Sr 0.411             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Granites   Rb/Sr 0.44         8   Analysis of Glenelg River Complex Leucogranite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Kemp 2001
Moose River 38 Sr 0.479             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Granulites   Rb/Sr 0.48 0.12       597   Average of granulite facies terrains. Rudnick & Presper 1990
Continental Intraplate Xenoliths   Rb/Sr 0.4838             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov 1996
Continental Intraplate Xenoliths 38 Sr 0.49           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov 1996
Tanzania 38 Sr 0.492             Estimated Sr concentrations derived from fluvial Ca data due to the precipitation of Sr with calcium carbonates in the sea. Sr concentrations were determined using standard mass spectrometric techniques. Palmer & Edmond 1989
Cratonic Xenoliths 38 Sr 0.511           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004
Oceanic Plateaus   87Sr/86Sr 0.513197             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Colombia locality, sample COL472. Values taken from Kerr et al. 2002. Kerr 2004 Kerr et al. 2002
Parana River 38 Sr 0.518             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Oceanic Plateaus   87Sr/86Sr 0.54             Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 749, sample 15-5 and 125-7.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
Oceanic Plateaus   87Sr/86Sr 0.56             Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 748, sample 79-6 and 90-4.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
N-MORB   Sr/Sr* 0.626             Elemental ratio values of N-MORB taken from varying sources for comparison to 735B gabbro composition analyzed in Hart et al. 1999. Hart et al. 1999 Hofmann 1988
Ito et al. 1987
Smith et al. 1995
Hauri & Hart 1997
Japan 38 Sr 0.63             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
Continental Intraplate Xenoliths   Rb/Sr 0.6579             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Stikine River 38 Sr 0.662             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
St. John River 38 Sr 0.674             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Australian Granite   Rb/Sr 0.7         1074   Analysis of Lachlan Fold Belt Hornblende Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Wormald & Price 1988
Havero Urelite 38 Sr 0.7           µg/g Trace element compositional data on Havero Urelite. Mittlefehldt 2004 Wanke et al. 1972
Extreme Depleted D-MORB basalts   87Sr/86Sr 0.702             Isotopic compositions of Depleted Mantle (DM) according to Strontium isotopes in the 'Extreme' present day MORB.  'Extreme' merely refers to the fact that these isotopic compositions are from the most depleted end of the MORB field. These average MORB compositions are calculated using a more restrictive set of filters in order to assure that MORB representing low degree melts or melts which have experienced large amounts of fractional crystallization do not affect the average.  Though degree of melting or fractional crystallization do not effect the average isotopic composition, for incompatible trace element ratios to reflect source compositions only high degree melts should be used.  These will be known as 'D-MORB' for Depleted Mid-Ocean Ridge Basalts.  It is also noted that the values of the 'Average' and 'Extreme' D-MORB are very similar. Salters & Stracke 2004
Depleted-Depleted MORB Mantle   87Sr/86Sr 0.70219             Strontium isotopic ratios of Depleted Depleted MORB Mantle which is based off isotopes that are 2s depleted from the average MORB value. Workman & Hart 2005
Depleted Mantle   87Sr/86Sr 0.7025             Present day depleted mantle trace elements are 10% of N-MORB abundances. Isotopic composition of the depleted mantle was chosen to lie near the depleted end of the Atlantic-Pacific MORB array. Parent/daughter ratios of the isotopic systems were calculated from the listed trace element and isotope data. Rehkamper & Hofmann 1997
N-MORB   87Sr/86Sr 0.7025             Compositie analyses on N-MORB glasses from the Mid-Atlantic Ridge as reported in the RidgePetDB database. Major and most trace elements for this N-type MORB are taken from the sample EW19309-012-00. Klein 2004 Lehnert 2000
N-MORB   87Sr/86Sr 0.7025             Analyses on N-MORB from the Mid-Cayman Rise. Glass compositions reported in ReidgePetDB for sample KNO0054-027-005 then augmented with BA, V and Y data on a similar sample reported by Thompson et al. 1980 and the sole isotopic analysis of a Mid-Cayman rise basalt from RidgePetDB. Klein 2004 Thompson et al. 1980
MORB Basaltic Glass   87Sr/86Sr 0.702505             MORB Glass ODP0142-0864A-001M-003/0-3 from the East Pacific Rise near the Clipperton Transform that along with 4 other samples from this region form a coherent liquid line of descent for fractional crystalization from the highest MgO magma. Klein 2004 Lehnert 2000
MORB Basaltic Glass   87Sr/86Sr 0.702566             MORB Glass MELPHNX-2-GC083 from the East Pacific Rise near the Clipperton Transform that along with 4 other samples from this region form a coherent liquid line of descent for fractional crystalization from the highest MgO magma. Klein 2004 Lehnert 2000
Depleted D-MORB basalts   87Sr/86Sr 0.7026             Isotopic compositions of Depleted Mantle (DM) according to Strontium isotopes in the 'Average' present day MORB.  These average MORB compositions are calculated using a more restrictive set of filters in order to assure that MORB representing low degree melts or melts which have experienced large amounts of fractional crystallization do not affect the average.  Though degree of melting or fractional crystallization do not effect the average isotopic composition, for incompatible trace element ratios to reflect source compositions only high degree melts should be used.  These will be known as 'D-MORB' for Depleted Mid-Ocean Ridge Basalts.  It is also noted that the values of the 'Average' and 'Extreme' D-MORB are very similar. Salters & Stracke 2004
N-MORB   87Sr/86Sr 0.7026             Analyses on N-MORB from the Northern section of the East Pacific Rise as reported by Niu et al. 1999. Klein 2004 Niu et al. 1999
Depleted MORB Mantle   87Sr/86Sr 0.70263             Average Strontium Isotopic compositions taken from Depleted MORB Mantle Su & Langmuir 2003. Workman & Hart 2005 Su & Langmuir 2003
N-MORB   87Sr/86Sr 0.70264             Average isotopic values of N-MORB taken from varying sources for comparison to 735B gabbro isotopic composition analyzed in Hart et al. 1999. Hart et al. 1999 Hofmann 1988
Ito et al. 1987
Smith et al. 1995
Hauri & Hart 1997
Transitional Mid-Ocean Ridge Basalts   87Sr/86Sr 0.70268             Compositie analyses on T-MORB glasses from the Mid-Atlantic Ridge as reported in the RidgePetDB database. Major and most trace elements for this T-type MORB are taken from the sample VEM0025-001-022. Klein 2004 Lehnert 2000
Fresh Mid-Ocean Ridge Basalts   87Sr/86Sr 0.7027             Isotopic compositions of Depleted Mantle (DM) according to Strontium isotopic values from the 'All MORB' data compilation.  To achieve an average isotopic composition of the Depleted Mantle the PetDB database was utilized. All eruptive products from mid-ocean spreading centers were compiled and filtered to include only samples that were erupted in water depths in excess of 2000 m.  All samples that contained more than 55 wt.% SiO2 were excluded as well. Samples with non-smooth REE patterns were excluded wherever applicable.  With these minimal steps of filtering, this ensures that at least part of the plume influenced basalts are excluded.    Salters & Stracke 2004
Fresh Mid-Ocean Ridge Basalts   87Sr/86Sr 0.70274         104   Average major and trace element values for Primitive MORB given in weight percent and parts per million respectively. Kelemen et al. 2004
Protolith Gabbros at ODP Site 735   87Sr/86Sr 0.702812         8   Average of 8 protolith samples as defined in the footnote of Table 2 and Table 1. Hart et al. 1999
N-MORB   87Sr/86Sr 0.7029             Analyses of Kolbeinsey Ridge N-MORB which is a high F and high P MORB. These analyses were taken from the Ridge PetDB for sample POS0158-404-00 with major and trace elements derived from whole rock powders, Pb, Sr, Rb and isotope ratios derived from glasses. Klein 2004 Lehnert 2000
Andesites   87Sr/86Sr 0.70291         13   Average major and trace element values from Primitive Aleutian Arc Andesites given by Kelemen et al. 2004. All major element oxide values are given in wt. % and trace elements in ppm. Kelemen et al. 2004
ODP Site 735   87Sr/86Sr 0.702921 0.7029       22   Average of 22 composite strip samples as defined in Table 1. Hart et al. 1999
Oceanic Plateaus   87Sr/86Sr 0.702961             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Curacao locality, sample CUR14. Values taken from Kerr et al. 1996b. Kerr 2004 Kerr et al. 1996
Marianas Basalt   87Sr/86Sr 0.70303         45   Average major and trace element values for Marianas Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Oceanic Plateaus   87Sr/86Sr 0.703041             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Gorgona locality, sample GOR160. Values taken from Aitken & Echeverria, Dupre & Echeverria and Jochum et al. 1991. Kerr 2004 Aitken & Echeverria 1984
Dupre & Echeverria 1984
Jochum et al. 1991
Enriched-Depleted MORB Mantle   87Sr/86Sr 0.70307             Strontium isotopic ratios of Enriched Depleted MORB Mantle which is based off isotopes that are 2s enriched over the average MORB value. Workman & Hart 2005
Aleutian Basalts   87Sr/86Sr 0.70315         19   Average major and trace element values for Aleutian Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Oceanic Plateaus   87Sr/86Sr 0.7032             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Ecuador locality, sample EQ1. Values taken from Reynaud et al. 1999. Kerr 2004 Reynaud et al. 1999
Oceanic Plateaus   87Sr/86Sr 0.703207             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Colombia locality, sample VIJ1. Values taken from Kerr et al. 1997 and Hauff et al. 2000b. Kerr 2004 Kerr et al. 1997
Hauff et al. 2000
Oceanic Plateaus   87Sr/86Sr 0.703215             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Curacaolocality, sample CUR20. Values taken from Kerr et al. 1996b. Kerr 2004 Kerr et al. 1996
Oceanic Plateaus   87Sr/86Sr 0.703283             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Gorgona locality, sample GOR117. Values taken from Aitken & Echeverria, Dupre & Echeverria and Jochum et al. 1991. Kerr 2004 Aitken & Echeverria 1984
Dupre & Echeverria 1984
Jochum et al. 1991
Basalts   87Sr/86Sr 0.7033         8   Average major and trace element values for West African (Cameroon Line) Low Sr Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Marzoli et al. 2000
Scotia Island Basalt   87Sr/86Sr 0.70337             Average major and trace element values for Scotian Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Oceanic Plateaus   87Sr/86Sr 0.70338             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Colombia locality, sample SDB18. Values taken from Kerr et al. 1997 and Hauff et al. 2000b. Kerr 2004 Kerr et al. 1997
Hauff et al. 2000
Basalts   87Sr/86Sr 0.7034         1   Average major and trace element values for Central Anatolian (Turkey) Late Miocene continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Wilson et al. 1997
Kamchatka Basalt   87Sr/86Sr 0.70344         28   Average major and trace element values for Kamchatka Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Basalts   87Sr/86Sr 0.7035         25   Average major and trace element values for Arabian Peninsula in Yemen Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Baker et al. 1997
Basalts   87Sr/86Sr 0.7035         6   Average major and trace element values for West African (Cameroon Line) High Sr Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Marzoli et al. 2000
Fresh MORB in Indian Ocean   87Sr/86Sr 0.7035             Analyses on MORB glasses from the Indian Ocean as given by Klein et al. 1991. Klein 2004 Klein et al. 1991
Hydrothermal Vents   87Sr/86Sr 0.7035             Global content of isotopic strontium at hydrothermally active areas. Low strontium content is indicative of mobilisation related to the water/rock ratio in the reaction zones and seawater passing thru the anhydrite precipitation zone. Palmer & Edmond 1989
Oceanic Plateaus   87Sr/86Sr 0.703546             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau DSDP site 150, sample 11-2 and 63-67. Values taken from Hauff et al. 2000b. Kerr 2004 Hauff et al. 2000
Oceanic Plateaus   87Sr/86Sr 0.70356             Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau ODP site 807, sample 88-3 and 76-79. Values taken from Mahoney et al. 1993a. Kerr 2004 Mahoney et al. 1993
Basalts   87Sr/86Sr 0.7036         3   Average major and trace element values for Taiwanese Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Chung et al. 1995
Basalts   87Sr/86Sr 0.7036         26   Average major and trace element values for European Rhine Graben Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Jung & Hoernes 2000
Oceanic Plateaus   87Sr/86Sr 0.70369             Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau Santa Isabel locality, sample I96. Values taken from Tejada et al. 1996. Kerr 2004 Tejada et al. 1996
Basalts   87Sr/86Sr 0.7038         4   Average major and trace element values for NE China Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Chung 1999
Cascade Basalt   87Sr/86Sr 0.70382         27   Average major and trace element values for Cascades Arc Basalt given in weight percent and parts per million respectively. Kelemen et al. 2004
Central American Basalts   87Sr/86Sr 0.70388         25   Average major and trace element values for Central American Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Island Arc Andesite   87Sr/86Sr 0.70389         141   Average major and trace element values for Average Oceanic Arc Basalt given in weight percent and parts per million respectively. Kelemen et al. 2004
E-MORB   87Sr/86Sr 0.70392             Compositie analyses on E-MORB glasses from the Mid-Atlantic Ridge as reported in the RidgePetDB database. Major and most trace elements for this E-type MORB are taken from the sample EW19309-004-002. Klein 2004 Lehnert 2000
New Hebrides Islands   87Sr/86Sr 0.70392         4   Average major and trace element values for New Hebrides Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Continental Arc Andesite   87Sr/86Sr 0.70401         133   Average major and trace element values for Average Continental Arc Basalt given in weight percent and parts per million respectively. Kelemen et al. 2004
Oceanic Plateaus   87Sr/86Sr 0.70404             Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau Maliata locality, sample SG1. Values taken from Tejada et al. 2002. Kerr 2004 Tejada et al. 2002
Basalts   87Sr/86Sr 0.7041         19   Average major and trace element values for N. Tanzania-East African Rift Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Paslick et al. 1995
Oceanic Plateaus   87Sr/86Sr 0.70413             Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau Maliata locality, sample ML407. Values taken from Tejada et al. 2002. Kerr 2004 Tejada et al. 2002
Kermadec Basalts   87Sr/86Sr 0.70419         19   Average major and trace element values for Kermadec Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Basalts   87Sr/86Sr 0.7042         7   Average major and trace element values for SE Australian Dubbo V.F. Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Zhang & O'Reilly 1997
Boninites   87Sr/86Sr 0.70423         55   Average major and trace element values from Primitive Arc Boninites (High-Mg Andesites) given by Kelemen et al. 2004. All major element oxide values are given in wt. % and trace elements in ppm. Kelemen et al. 2004
Oceanic Plateaus   87Sr/86Sr 0.70426             Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 749, sample 15-5 and 125-7.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
Basalts   87Sr/86Sr 0.7043         3   Average major and trace element values for Taos Plateau, Rio Grande Rift Tholeiitic Basalts as well as selected elemental and isotopic ratios. Farmer 2004 Dungan et al. 1986
Greater Antilles Basalt   87Sr/86Sr 0.70432         1   Average major and trace element values for Greater Antilles Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Oceanic Plateaus   87Sr/86Sr 0.70433             Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau ODP site 807, sample 75-4 and 46-48. Values taken from Mahoney et al. 1993a. Kerr 2004 Mahoney et al. 1993
Honshu Basalt   87Sr/86Sr 0.70437         27   Average major and trace element values for Honshu Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Luzon Basalt   87Sr/86Sr 0.70442         4   Average major and trace element values for Luzon Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Phanerozoic Flood Basalts   87Sr/86Sr 0.7045         18   Major and trace element compositions as well as selected isotopic composition for Deccan Traps Flood Basalts Kolhapur (Low Ti). Farmer 2004 Lightfoot et al. 1990
Silicate Earth   87Sr/86Sr 0.7045             Present day Sr parent/daughter ratios from isotopic signatures in relation to ratios from abyssal peridotite depletion trends. Workman & Hart 2005
Silicate Earth   87Sr/86Sr 0.7045             Isotopic compositions of Depleted Mantle (DM) according to Strontium isotopes in the Bulk Silicate Earth.  The composition of the Bulk Silicate Earth (BSE) has been estimated by McDonough & Sun 1995.  Salters & Stracke 2004
Volcanoclastic Turbidites   87Sr/86Sr 0.7045         43   Average of 43 combined analyses weighted by interval height. Plank & Langmuir 1998
Volcanoclastic Turbidites   87Sr/86Sr 0.7045         13   Average of 13 volcaniclastic turbidites corrected for pure silica using down-core logging for SiO2 contents, in a similar fashion as for the chert sections. Plank & Langmuir 1998
Volcanoclastic Turbidites   87Sr/86Sr 0.7045             Isotopic ratios of the Volcaniclastic Turbidites section of the DSDP Hole 801 sediment column. Isotopic ratios derived using data taken from several sources. Elliot et al. 1997
ODP/DSDP Site 417/418   87Sr/86Sr 0.704575             Super composite DSDP/ODP Site 417/418. Staudigel et al. 1995
ODP/DSDP Site 417/418   87Sr/86Sr 0.704575             This analysis represents a super-composite for DSDP Sites 417 and 418 combined. The recipe for this composite can be found in Appendix 1. Staudigel et al. 1996
Basalts   87Sr/86Sr 0.7046         8   Average major and trace element values for Vietnamese Tholeiitic Basalts as well as selected elemental and isotopic ratios. Farmer 2004 Hoang & Flower 1998
Skeena River   87Sr/86Sr 0.7046             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Upper Continental Crust   87Sr/86Sr 0.704636             Average isotopic composition of the Upper Crust as derived from composites taken from ODP sites 417/418. Values are taken from varying sources on the same composites in order to compare and contrast with 735B gabbroic isotopic composition which should closeley resemble 417/418. Hart et al. 1999 Staudigel et al. 1995
Smith et al. 1995
Hart & Staudigel 1989
Staudigel et al. 1989
Continental Arc Andesite   87Sr/86Sr 0.70469         31   Average major and trace element values from Primitive Continental Arc Andesites given by Kelemen et al. 2004. All major element oxide values are given in wt. % and trace elements in ppm. Kelemen et al. 2004
Basalts   87Sr/86Sr 0.7047         3   Average major and trace element values for Central Anatolian (Turkey) Early Miocene continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Wilson et al. 1997
Oceanic Plateaus   87Sr/86Sr 0.704767             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Gorgona locality, sample GOR94-35. Values taken from unpublished information. Kerr 2004
Lesser Antilles Basalt   87Sr/86Sr 0.70482         46   Average major and trace element values for Lesser Antilles Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Island Arc Andesite   87Sr/86Sr 0.70493         14   Average major and trace element values from Primitive Oceanic Arc Andesites given by Kelemen et al. 2004. All major element oxide values are given in wt. % and trace elements in ppm. Kelemen et al. 2004
Andes Basalt   87Sr/86Sr 0.70515         11   Average major and trace element values for Andean Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Vanuatu Trench   87Sr/86Sr 0.7053             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Oceanic Plateaus   87Sr/86Sr 0.705319             Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 748, sample 79-6 and 90-4.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
Basalts   87Sr/86Sr 0.7054         7   Average major and trace element values for SE Australian Newer V.P. Tholeiitic Basalts as well as selected elemental and isotopic ratios. Farmer 2004 Price et al. 1997
Nass River   87Sr/86Sr 0.7054             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Stikine River   87Sr/86Sr 0.7054             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Turbidites   87Sr/86Sr 0.70549         4   Similar lithologies as for Site 183 but with a greater thickness of the turbidites. Combined 300 m of Site 183 sediments with 480 m of turbidites in Site 178 and two shallow piston cores. Plank & Langmuir 1998
Basalts   87Sr/86Sr 0.7055         10   Average major and trace element compositions for Taiwanese Mt. Tsaoling Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Chung et al. 2001
Blue Nile River   87Sr/86Sr 0.7056             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Philippines   87Sr/86Sr 0.7056             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
Oceanic Plateaus   87Sr/86Sr 0.705783             Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 747, sample 16-5 and 103-6.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
Phanerozoic Flood Basalts   87Sr/86Sr 0.7058         1   Major and trace element compositions as well as selected isotopic composition for Parana Flood Basalts in Esmeralda (High Ti). Farmer 2004 Peate 1997
Alaska Trench   87Sr/86Sr 0.70588             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 3 or moderate. Plank & Langmuir 1998
Andesites   87Sr/86Sr 0.70595         50   Average values of Aleutian Andeiste isotopic ratios taken from Plank and Langmuir 1988. Andesite was used in this case to correct for the ash layer which was omitted from sampling of the upper unit of the Aleutian trench. Plank & Langmuir 1998 Plank & Langmuir 1988
Diatome Ooze   87Sr/86Sr 0.70595         4   This ash-rich diatom ooze contains 50% diatoms and 7% ash particles. The individual analyses therefore have been diluted with 65% SiO2 based on an average 75% SiO2 in the diatoms. The analyses were further enriched by adding an average Aleutian andesite (Plank & Langmuir, 1988) to represent the ash layers in this section. Plank & Langmuir 1998
Green Clay   87Sr/86Sr 0.70595         3   Silty clay (37.5%), clay (50%) and nannofossil ooze (12.5%) make up this section. Two analyses have been made for silty clay and the clay lithologies, whereas the ooze is assumed to contain 56% CaO, 44% CO2 and 1000 ppm Sr. Plank & Langmuir 1998
Phanerozoic Flood Basalts   87Sr/86Sr 0.706         1   Major and trace element compositions as well as selected isotopic composition for Parana Flood Basalts in Urubici (High Ti). Farmer 2004 Peate 1997
Juba River   87Sr/86Sr 0.7061             Estimated 87Sr/86Sr ratios normalized to a value of 0.7080. Precision is of no importance in measurements here due to the seasonal variation which causes concentration values to fluxuate. Palmer & Edmond 1989
Oceanic Plateaus   87Sr/86Sr 0.706165             Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 750, sample 17-3 and 23-26.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
DSDP/ODP Site 801   87Sr/86Sr 0.70617             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Izu-Bonin Trench   87Sr/86Sr 0.70617             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 4 or low. Plank & Langmuir 1998
Marianas Trench   87Sr/86Sr 0.70617             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Basalts   87Sr/86Sr 0.7062         10   Average major and trace element compositions for Aegean Sea Dodecanese V.F. Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Robert et al. 1992
DSDP/ODP Site 801   87Sr/86Sr 0.7062             Isotopic estimates of Bulk Marianas sediment derived from several different sources of analysis based upon DSDP Hole 801. Elliot et al. 1997
Manning River   87Sr/86Sr 0.7063             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
Phanerozoic Flood Basalts   87Sr/86Sr 0.7063         31   Major and trace element compositions as well as selected isotopic composition for Columbia River Flood Basalts NW US (High Ti). Farmer 2004 Hooper & Hawkesworth 1993
Phanerozoic Flood Basalts   87Sr/86Sr 0.7063         3   Major and trace element compositions as well as selected isotopic composition for Siberian Traps Flood Basalt Gudchikhinsky (Low Ti). Farmer 2004 Wooden et al. 1993
Aleutian Trench   87Sr/86Sr 0.70635             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Eel River   87Sr/86Sr 0.7064             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Brass 1976
Phanerozoic Flood Basalts   87Sr/86Sr 0.7066         6   Major and trace element compositions as well as selected isotopic composition for Deccan Traps Flood Basalts Mahabaleshwar (High Ti). Farmer 2004 Lightfoot et al. 1990
Basalts   87Sr/86Sr 0.7068         27   Average major and trace element compositions for Western U.S. Sierra Nevada Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Farmer et al. 2002
Basalts   87Sr/86Sr 0.7069         7   Average major and trace element compositions for African Virunga V.F. High Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Rogers et al. 1998
Cascadia Trench   87Sr/86Sr 0.7071             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 4 or low. Plank & Langmuir 1998
Clastic Turbidites   87Sr/86Sr 0.7071         28   In this homogeneous turbidite unit 28 analyses were used to calculate an average by weighting interval height and lithology. Proportions of sand, silt and clay were estimated from core descriptions. Plank & Langmuir 1998
Copper River   87Sr/86Sr 0.7071             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Phanerozoic Flood Basalts   87Sr/86Sr 0.7073         1   Major and trace element compositions as well as selected isotopic composition for Parana Flood Basalts in Gramado (Low Ti). Farmer 2004 Peate 1997
Japan   87Sr/86Sr 0.7076             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
Diatome Mud   87Sr/86Sr 0.70763         6   Based on smear slides an average of 35% biogenic opal (SiO2) has been estimated, which is consistent with 17 wt% biogenic opal estimated from shipboard logs. The 6 analyses have simply been averaged since the SiO2 content is consistently ~57%. Plank & Langmuir 1998
Phanerozoic Flood Basalts   87Sr/86Sr 0.7078         5   Major and trace element compositions as well as selected isotopic composition for Siberian Traps Flood Basalts Nadezhdinsky (High Ti). Farmer 2004 Wooden et al. 1993
Kerm Trench   87Sr/86Sr 0.70799             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 4 or low. Plank & Langmuir 1998
Basalts   87Sr/86Sr 0.7081         1   Average major and trace element compositions for Chinese Tibetan Plateau Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Turner et al. 1996a
DSDP/ODP Site 800   87Sr/86Sr 0.7081             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Seine River   87Sr/86Sr 0.7081             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Pelagic Clay   87Sr/86Sr 0.7082             The uppermost layer of the sediment from Hole 801 of ODP Leg 129. Values given are estimates of the isotopic composition of this 65m layer based on several sources outside of this study. Elliot et al. 1997
Pelagic Clay   87Sr/86Sr 0.70822         6   Average of 6 analyses weighted by depth interval. Plank & Langmuir 1998
Pelagic Clay   87Sr/86Sr 0.70822         6   Average of 6 analyses weighted by depth interval. Plank & Langmuir 1998
Indonesia   87Sr/86Sr 0.7083             Estimated 87Sr/86Sr ratios normalized to a value of 0.7080. Precision is of no importance in measurements here due to the seasonal variation which causes concentration values to fluxuate. Palmer & Edmond 1989
Dniepr River   87Sr/86Sr 0.7084             Estimated 87Sr/86Sr ratios normalized to a value of 0.7080. Precision is of no importance in measurements here due to the seasonal variation which causes concentration values to fluxuate. Palmer & Edmond 1989
Don River   87Sr/86Sr 0.7084             Estimated 87Sr/86Sr ratios normalized to a value of 0.7080. Precision is of no importance in measurements here due to the seasonal variation which causes concentration values to fluxuate. Palmer & Edmond 1989
Dvina River   87Sr/86Sr 0.7084             Estimated 87Sr/86Sr ratios normalized to a value of 0.7080. Precision is of no importance in measurements here due to the seasonal variation which causes concentration values to fluxuate. Palmer & Edmond 1989
Maas River   87Sr/86Sr 0.7085             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Central America Trench   87Sr/86Sr 0.70852             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Carbonate   87Sr/86Sr 0.70858         13   The average Ca-carbonate in this unit is 80% based on Leg 67 shipboard carbonate bomb analyses. The analyses have been adjusted accordingly for 45% CaO. Plank & Langmuir 1998
Brazos River   87Sr/86Sr 0.7087             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Brass 1976
Rhone River   87Sr/86Sr 0.7087             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Albarede & Michard 1987
Schelde River   87Sr/86Sr 0.7088             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Danube River   87Sr/86Sr 0.7089             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Wesser River   87Sr/86Sr 0.7089             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Kuskokwim River   87Sr/86Sr 0.709             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Seawater 38 87Sr/86Sr 0.70907   4e-05     42   Average 87Sr/86Sr value measured from Pelecypods, Gastropods, Worms, Barnacles, Echinoderms, Shark and Ray teeth and Carbonate sediments. Burke et al. 1992
Seawater   87Sr/86Sr 0.70916             Global isotopic strontium content in seawater which has been found in this study to not be in a steady state as was previously believed. Hydrothermal flux and riverine input have caused the concentration to vary greatly. Palmer & Edmond 1989
Diatom Oozes & Clay   87Sr/86Sr 0.709189         15   Weighted average based on DCP analyses for 200 m of diatom oozes. Plank & Langmuir 1998
South Sandwich Trench   87Sr/86Sr 0.70919             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Rhine River   87Sr/86Sr 0.7092             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Rio Grande River   87Sr/86Sr 0.7092             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Vistula River   87Sr/86Sr 0.7094             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
St. Lawrence River   87Sr/86Sr 0.7095             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Tonga Trench   87Sr/86Sr 0.70952             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Tisza River   87Sr/86Sr 0.7096             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Elbe River   87Sr/86Sr 0.7097             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Oceanic Plateaus   87Sr/86Sr 0.70973             Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 738, sample 34-1 and 88-92. Values taken from Mahoney et al. 1995. Kerr 2004 Mahoney et al. 1995
St. John River   87Sr/86Sr 0.7098             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Tamar River   87Sr/86Sr 0.7098             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Basalts   87Sr/86Sr 0.71007             Average major and trace element compositions for Italian Roman V.F. Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Peccerillo 1999
Irrawady River   87Sr/86Sr 0.7102             Estimated 87Sr/86Sr ratios normalized to a value of 0.7080. Precision is of no importance in measurements here due to the seasonal variation which causes concentration values to fluxuate. Palmer & Edmond 1989
Mekong River   87Sr/86Sr 0.7102             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Mississippi River   87Sr/86Sr 0.7102             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Stordal & Wasserburg 1986
Salween River   87Sr/86Sr 0.7102             Estimated 87Sr/86Sr ratios normalized to a value of 0.7080. Precision is of no importance in measurements here due to the seasonal variation which causes concentration values to fluxuate. Palmer & Edmond 1989
Petit Mecatina River   87Sr/86Sr 0.7105             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Chert   87Sr/86Sr 0.71055         4   Average of 4 brown chert analyses. Due to the poor recovery of these notoriously hard chert beds, this chert section may be overdiluted by silica causing an underestimation of the geochemical abundances. The dilution factors have therefore been based on the down-core logging for SiO2 contents. Plank & Langmuir 1998
Chert   87Sr/86Sr 0.71055         4   Average of 4 brown chert analyses. Due to the poor recovery of these notoriously hard chert beds, this chert section may be overdiluted by silica causing an underestimation of the geochemical abundances. The dilution factors have therefore been based on the down-core logging for SiO2 contents. Plank & Langmuir 1998
Interlayered Chert & Limestone   87Sr/86Sr 0.71055         5   Average of 5 chert and limestone analyses. Due to the poor recovery of these notoriously hard chert beds, this chert section may be overdiluted by silica causing an underestimation of the geochemical abundances. The dilution factors have therefore been based on the down-core logging for SiO2 contents. The logging data was also used to determine the average CaO as calcium carbonate to dilute all elements (except Sr) accordingly. Plank & Langmuir 1998
Radiolarites   87Sr/86Sr 0.71055         17   Average of 17 combined analyses weighted by interval height. Plank & Langmuir 1998
Radiolarites   87Sr/86Sr 0.71055         4   Average of 4 radiolarite analyses that have been corrected using dilution factors based on the down-core logging for SiO2 contents. Plank & Langmuir 1998
Diatome Clay   87Sr/86Sr 0.71057         6   Upper 240 m of a total section that is 335 m thick (Site 581) dominated by diatom clay. Plank & Langmuir 1998
Chert   87Sr/86Sr 0.7106             Isotopic estimates of the second of four layers from the sediment column of DSDP Leg 129's Hole 801. Isotopic ratios derived from several sources outside of this study. Elliot et al. 1997
Garonne River   87Sr/86Sr 0.7106             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Albarede & Michard 1987
Radiolarites   87Sr/86Sr 0.7106             Estimated Isotopic composition of the 4th layer in the sediment column of DSDP Hole 801. Isotope ratios were derived from several outside sources. Elliot et al. 1997
Colorado River   87Sr/86Sr 0.7108             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
Murray River   87Sr/86Sr 0.7108             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
Amazon River   87Sr/86Sr 0.7109             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Yangtze River   87Sr/86Sr 0.7109             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
MacKenzie River   87Sr/86Sr 0.711             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
South Antilles Trench   87Sr/86Sr 0.711             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 3 or low. Plank & Langmuir 1998
Yellow River   87Sr/86Sr 0.7111             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Indus River   87Sr/86Sr 0.7112             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
St. Maurice River   87Sr/86Sr 0.7112             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Japan Trench   87Sr/86Sr 0.71121             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 2 or high. Plank & Langmuir 1998
Kamchatka Trench   87Sr/86Sr 0.71121             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 3 or moderate. Plank & Langmuir 1998
Kuriles Trench   87Sr/86Sr 0.71121             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 2 or high. Plank & Langmuir 1998
Kenya   87Sr/86Sr 0.7114             Estimated 87Sr/86Sr ratios normalized to a value of 0.7080. Precision is of no importance in measurements here due to the seasonal variation which causes concentration values to fluxuate. Palmer & Edmond 1989
Victoria Nile River   87Sr/86Sr 0.7114             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Hudson River   87Sr/86Sr 0.7118             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Pearl River   87Sr/86Sr 0.7119             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Rivers   87Sr/86Sr 0.7119             Global average of isotopic strontium content due to continental runoff and river input. This value is much higher than was originally given by previous references which partly accounts for the rise in the global Sr budget across the board. Palmer & Edmond 1989
Fraser River   87Sr/86Sr 0.712             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Columbia River   87Sr/86Sr 0.7121             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
Pelagic Clay   87Sr/86Sr 0.71271         3   Middle 30 m of a total section that is 335 m thick (Site 581) dominated by pelagic clay. Plank & Langmuir 1998
Interlayerd Clay & Chert   87Sr/86Sr 0.71297         2   Bottom 65 m of a total section that is 335 m thick (Site 581) dominated by interlayered clay and chert. Plank & Langmuir 1998
Cauveri River   87Sr/86Sr 0.713             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Brass 1976
Natashquan River   87Sr/86Sr 0.7131             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Saguenay River   87Sr/86Sr 0.7131             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Moose River   87Sr/86Sr 0.7132             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Yukon River   87Sr/86Sr 0.7137             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Chao Phraya River   87Sr/86Sr 0.7138             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Parana River   87Sr/86Sr 0.7139             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Attawapiskat River   87Sr/86Sr 0.714             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Niger River   87Sr/86Sr 0.714             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Susquehanna River   87Sr/86Sr 0.7142             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Fisher & Stueber 1976
Nelson River   87Sr/86Sr 0.7146             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Orange River   87Sr/86Sr 0.7146             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Congo River   87Sr/86Sr 0.7155             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Albany River   87Sr/86Sr 0.7158             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Mozambique   87Sr/86Sr 0.716             Estimated 87Sr/86Sr ratios normalized to a value of 0.7080. Precision is of no importance in measurements here due to the seasonal variation which causes concentration values to fluxuate. Palmer & Edmond 1989
Zambezi River   87Sr/86Sr 0.716             Estimated 87Sr/86Sr ratios normalized to a value of 0.7080. Precision is of no importance in measurements here due to the seasonal variation which causes concentration values to fluxuate. Palmer & Edmond 1989
Moisie River   87Sr/86Sr 0.7163             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Ferruginous Clay   87Sr/86Sr 0.71639         2   The proportions of the Fe-rich and carbonate-rich clays are roughly equal based on barrel sheet descriptions. One analysis of each rock type is simply averaged. Plank & Langmuir 1998
Mae Klong River   87Sr/86Sr 0.7164             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Zeolite Clay   87Sr/86Sr 0.71676         3   This unit contains a mixture of 50% zeolite clay, 20% Mn-bearing clay and 30% normal clay based on barrel sheet descriptions. The three analyses are weighted accordingly. Plank & Langmuir 1998
East Sunda Trench   87Sr/86Sr 0.71682             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Java Trench   87Sr/86Sr 0.71682             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Manicougan River   87Sr/86Sr 0.7169             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Sao Francisco River   87Sr/86Sr 0.717             Estimated 87Sr/86Sr ratios normalized to a value of 0.7080. Precision is of no importance in measurements here due to the seasonal variation which causes concentration values to fluxuate. Palmer & Edmond 1989
Tocantins River   87Sr/86Sr 0.717             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Subducted Sediment   87Sr/86Sr 0.7173             Global subducting sediment (GLOSS) composition estimate based on DSDP and ODP drill cores for 70% of the worldwide trenches. The average is calculated as a mass-flux-weighted global mean taking into account convergence rates, trench lengths and sediment columns. Includes sediment columns from seafloor that is not currently subducting. Plank & Langmuir 1998
Northern Churchill River   87Sr/86Sr 0.7176             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Hayes River   87Sr/86Sr 0.7177             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Winisk River   87Sr/86Sr 0.7177             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
North Antilles Trench   87Sr/86Sr 0.71788             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 2 or high. Plank & Langmuir 1998
Severn River   87Sr/86Sr 0.7182             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Orinoco River   87Sr/86Sr 0.7183             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Aux Outardes River   87Sr/86Sr 0.7186             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Nottaway River   87Sr/86Sr 0.7186             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Thelon River   87Sr/86Sr 0.7188             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Radiolarian Clay   87Sr/86Sr 0.71957         11   This section contains 17% biogenic opal but the analyses were not diluted based on there SiO2 content. Since the average Rb concentratio is equal to the simple average in 11 analyses, simple averaging is applied here. Plank & Langmuir 1998
Middle Churchill River   87Sr/86Sr 0.72             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Oceanic Plateaus   87Sr/86Sr 0.72             Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Ecuador locality, sample EQ1. Values taken from Reynaud et al. 1999. Kerr 2004 Reynaud et al. 1999
Brahmaputra River   87Sr/86Sr 0.721             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Tanzania   87Sr/86Sr 0.7219             Estimated 87Sr/86Sr ratios normalized to a value of 0.7080. Precision is of no importance in measurements here due to the seasonal variation which causes concentration values to fluxuate. Palmer & Edmond 1989
Ganges River   87Sr/86Sr 0.7257             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Kazan River   87Sr/86Sr 0.7258             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Arnaud River   87Sr/86Sr 0.7264             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
A La Baleine River   87Sr/86Sr 0.7265             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Murchison River   87Sr/86Sr 0.728             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
Rupert River   87Sr/86Sr 0.7283             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Eastmain River   87Sr/86Sr 0.7285             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Back River   87Sr/86Sr 0.7291             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Xingu River   87Sr/86Sr 0.7292             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Koksoak River   87Sr/86Sr 0.7301             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Andaman Trench   87Sr/86Sr 0.73128             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 4 or low. Plank & Langmuir 1998
Tapajos River   87Sr/86Sr 0.7322             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989
Avon River   87Sr/86Sr 0.7326             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
La Grande River   87Sr/86Sr 0.7346             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Aux Feuilles River   87Sr/86Sr 0.7347             Strontium isotopic content of major world rivers. All values obtained using standard mass specrometric techniques and used to determine global runoff of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Sumatra Trench   87Sr/86Sr 0.73493             Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 3 or moderate. Plank & Langmuir 1998
Turbidites   87Sr/86Sr 0.73493         4   Average of 4 Quaternary turbidites from the Ganges cone after McLennan et al. (1990) assuming that equal proportions of fine (clay-silt) and coarse (silt-sand) units. Plank & Langmuir 1998
Mae Klong River 38 Sr 0.75             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Pearl River 38 Sr 0.767             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Skeena River 38 Sr 0.811             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Nelson River 38 Sr 0.856             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Granulites   Rb/Sr 0.89 0.14       478   Average of granulite facies terrains. Rudnick & Presper 1990
Rivers 38 Sr 0.89             Global strontium content input to the oceans by continental runoff by rivers. Palmer & Edmond 1989
Fraser River 38 Sr 0.913             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Continental Intraplate Xenoliths   Rb/Sr 0.92             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Eggins et al. 1998
Tamar River 38 Sr 0.928             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Brahmaputra River 38 Sr 0.93             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Columbia River 38 Sr 0.982             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
Core 38 Sr 0           µg/g Compostioinal models for the bulk Earth, core and silicate Earth are modified after McDonough & Sun (1995). McDonough 1998
Baldissero Spinel Lherzolites 38 Sr 1   0.6     14 ppm Elements analyzed from Baldissero section of Ivrea Complex in Northern Italy. Minor and trace elements analyzed by AAS, INAA, RFA, ICP-AES, ICP-MS, Isotope dilution, Electrometry or Coulometry. Accuracy of all methods checked by USGS reference rocks. Wedepohl & Hartmann 1994
ODP Site 735   Sr/Sr* 1.005 1.291       22   Average of 22 composite strip samples as defined in Table 1. Hart et al. 1999
Upper Continental Crust   Sr/Sr* 1.01             Elemental ratios of the Upper Crust as derived from composites taken from ODP sites 417/418. Values are taken from varying sources on the same composites in order to compare and contrast with 735B gabbroic composition which should closeley resemble each other. Hart et al. 1999 Staudigel et al. 1995
Smith et al. 1995
Hart & Staudigel 1989
Staudigel et al. 1989
Manning River 38 Sr 1.02             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
Chao Phraya River 38 Sr 1.071             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Kenya 38 Sr 1.1             Estimated Sr concentrations derived from fluvial Ca data due to the precipitation of Sr with calcium carbonates in the sea. Sr concentrations were determined using standard mass spectrometric techniques. Palmer & Edmond 1989
Victoria Nile River 38 Sr 1.102             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Nass River 38 Sr 1.107             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Cratonic Xenoliths 38 Sr 1.14           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004
Mozambique 38 Sr 1.2             Estimated Sr concentrations derived from fluvial Ca data due to the precipitation of Sr with calcium carbonates in the sea. Sr concentrations were determined using standard mass spectrometric techniques. Palmer & Edmond 1989
Zambezi River 38 Sr 1.2             Estimated Sr concentrations derived from fluvial Ca data due to the precipitation of Sr with calcium carbonates in the sea. Sr concentrations were determined using standard mass spectrometric techniques. Palmer & Edmond 1989
Susquehanna River 38 Sr 1.225             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Fisher & Stueber 1976
Garonne River 38 Sr 1.267             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Albarede & Michard 1987
Philippines 38 Sr 1.41             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
Copper River 38 Sr 1.449             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Hudson River 38 Sr 1.454             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Australian Granite   Sr/Nd 1.48             Analysis of A-type Lachlan Fold Belt Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Collins et al. 1982
Juba River 38 Sr 1.5             Estimated Sr concentrations derived from fluvial Ca data due to the precipitation of Sr with calcium carbonates in the sea. Sr concentrations were determined using standard mass spectrometric techniques. Palmer & Edmond 1989
Blue Nile River 38 Sr 1.55             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
St. Lawrence River 38 Sr 1.564             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Ganges River 38 Sr 1.581             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Yukon River 38 Sr 1.589             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Kuskokwim River 38 Sr 1.603             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Australian Granite   Rb/Sr 1.67             Analysis of A-type Lachlan Fold Belt Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Collins et al. 1982
Mississippi River 38 Sr 1.712             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Stordal & Wasserburg 1986
Australian Granite   Rb/Sr 1.84         13   Analysis of Himalayan Leucogranite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Inger & Harris 1993
Orange River 38 Sr 1.851             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Late Archean Upper Crust   Ba/Sr 1.9             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Oceanic Plateaus   87Sr/86Sr 1.95             Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 738, sample 34-1 and 88-92. Values taken from Mahoney et al. 1995. Kerr 2004 Mahoney et al. 1995
Central East China Craton   Sr/Nd 10             Compostional estimate of the entire Central East China province. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Central East China Craton   Sr/Nd 10.4             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
CI Chondrites 38 Sr 10.4           ppm Average calculated for volatile-free C1 chondrites after McDonough (1987). McDonough et al. 1992
Granites   Sr/Nd 10.64             Analysis of Archean Calc-Alkaline Type 1 & 2 Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Sylvester 1995
Central East China Craton   Sr/Nd 10.8             Compostional estimate of the entire Central East China province. Gao et al. 1998
Battle Creek Formation 38 Sr 100         7 ppm Silty aphanitic phosphorites of the intra-cratonic Georgina Basin; Battle formation of Australia. Detection Limit = 2 ppm. Altschuller 1980 De Keyser & Cook 1972
Oceanic Plateaus 38 Sr 100           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau Maliata locality, sample ML407. Values taken from Tejada et al. 2002. Kerr 2004 Tejada et al. 2002
Zeolite Clay 38 Sr 100         3 ppm This unit contains a mixture of 50% zeolite clay, 20% Mn-bearing clay and 30% normal clay based on barrel sheet descriptions. The three analyses are weighted accordingly. Plank & Langmuir 1998
Phosphoria Formation 38 Sr 1000         60 ppm Dark pelletal shaly phosphorites, average of the Retort (20) and Meade Peak (40) phosphatic shale members of the Phosphoria formation of the North Rocky Mountains, associated with black chert, shale and carbonates of the Permian geosyncline, P2O5 = 23-37%. Detection Limit = 2 ppm. Altschuller 1980 Gulbrandsen 1966
La Caja Formation 38 Sr 1010         8 ppm Gray, calcareous, pelletal phosphorites in a sequence of offshore cherty and silty limestones of the Mexican geosyncline, La Caja Formation in Concepcion del Oro of the Zacatecas province, Mexico. Detection Limit = 2 ppm. Altschuller 1980 Rogers et al. 1956
Basalts 38 Sr 1014         13 ppm Average major and trace element compositions for Aegean Sea Dodecanese V.F. Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Robert et al. 1992
Andesites 38 Sr 1035.88         27 ppm Average major and trace element values from Primitive Aleutian Arc Andesites given by Kelemen et al. 2004. All major element oxide values are given in wt. % and trace elements in ppm. Kelemen et al. 2004
Oceanic Plateaus 38 Sr 107           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau ODP site 807, sample 88-3 and 76-79. Values taken from Mahoney et al. 1993a. Kerr 2004 Mahoney et al. 1993
Oceanic Plateaus 38 Sr 107           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Gorgona locality, sample GOR117. Values taken from Aitken & Echeverria, Dupre & Echeverria and Jochum et al. 1991. Kerr 2004 Aitken & Echeverria 1984
Dupre & Echeverria 1984
Jochum et al. 1991
Pelites 38 Sr 107         1341 ppm Average of 1238 subsamples and 103 composites. Gao et al. 1998
Oceanic Plateaus 38 Sr 108           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau Maliata locality, sample SG1. Values taken from Tejada et al. 2002. Kerr 2004 Tejada et al. 2002
Shales 38 Sr 108           ppm Condie 1993
Komatiites 38 Sr 11           ppm Condie 1993
Oceanic Plateaus 38 Sr 11           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Curacaolocality, sample CUR20. Values taken from Kerr et al. 1996b. Kerr 2004 Kerr et al. 1996
Middle Continental Crust   Sr/Nd 11.28             Major and minor element composition of the Middle Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Depleted Mantle 38 Sr 11.3           ppm Present day depleted mantle trace elements are 10% of N-MORB abundances. Isotopic composition of the depleted mantle was chosen to lie near the depleted end of the Atlantic-Pacific MORB array. Parent/daughter ratios of the isotopic systems were calculated from the listed trace element and isotope data. Units of trace elements assumed to be in PPM. Rehkamper & Hofmann 1997
Central East China Craton   Sr/Nd 11.4             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith using the median values of Rudnick & Fountain (1995). Gao et al. 1998
Primitive Mantle 38 Sr 11.4           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Australian Granite   Sr/Nd 11.48         13   Analysis of Himalayan Leucogranite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Inger & Harris 1993
Central East China Craton   Sr/Nd 11.7             Compostional estimate of the entire Central East China province. Gao et al. 1998
Upper Continental Crust   Sr/Nd 11.85             Major and minor element composition of the Upper Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Fresh Mid-Ocean Ridge Basalts   Sr/Nd 11.88             Constant' ratios in MORB as taken from the 'All MORB' data set according to Salters and Stracke 2003.  The 'All MORB' data set is a compilation of 639 sample ratios to represent the MORB composition.  In using these values and applying a simple mathematical process order to remove the outliers, which are found by calculating the upper and lower quartile range, then applying the outlier criterion (explained in Salters and Stracke 2003 pg.7).  In addition to this method all the samples with La > 5 ppm were rejected.  This, much like with the tests and criteria of the D-MORB values, is a method of removing low degree melts from the MORB data in order to come closer to a value for Depleted Mantle.  Salters & Stracke 2004
Izu-Bonin Trench 38 Sr 110           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 4 or low. Plank & Langmuir 1998
Marine Organisms 38 Sr 1100           ppm Concentration values of various elements found in marine organisms. Element concentrations are mainly from brown algae data from Bowen 1979, which are also indicative of phytoplankton and zooplankton. Li 1991 Bowen 1979
Orangeite 38 Sr 1105         114 ppm Average major and trace element composition and selected isotopic data for Orangeites from Swartuggens, Finisch, Bellsbank and Sover kimberlite localities in South Africa. Farmer 2004 Mitchell 1995
Felsic Volcanics 38 Sr 111           ppm Condie 1993
North Antilles Trench 38 Sr 111           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 2 or high. Plank & Langmuir 1998
Australian Granite 38 Sr 112         704 ppm Analysis of Lachlan Fold Belt Cordierite Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Chappell & White 1992
Oceanic Crust 38 Sr 113           ppm Minor and trace element averages for the Oceanic crust based on Hofmann 1988 and Wedepohl 2011 Wedepohl & Hartmann 1994 Hofmann 1988
N-MORB 38 Sr 113.2           ppm Values of N-MORB taken from varying sources for comparison to 735B gabbro composition analyzed in Hart et al. 1999. Hart et al. 1999 Hofmann 1988
Ito et al. 1987
Smith et al. 1995
Hauri & Hart 1997
N-MORB 38 Sr 113.2   27.28     26 ppm Trace element average abundances for N-MORB as taken from analysis of 26 fresh MORB glasses defined N-type by the light-REE depletion.  These values were originally measured by Jochum et al. 1988. All standard deviations were calculated from percent values given in Hofmann 1988 (Table 1). Hofmann 1988 Jochum et al. 1988
Oceanic Plateaus 38 Sr 1131           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 748, sample 79-6 and 90-4.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
Diatom Oozes & Clay 38 Sr 115         15 ppm Weighted average based on DCP analyses for 200 m of diatom oozes. Plank & Langmuir 1998
Diatome Clay 38 Sr 115         6 ppm Upper 240 m of a total section that is 335 m thick (Site 581) dominated by diatom clay. Plank & Langmuir 1998
Oceanic Plateaus 38 Sr 115           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau Santa Isabel locality, sample I96. Values taken from Tejada et al. 1996. Kerr 2004 Tejada et al. 1996
ODP/DSDP Site 417/418 38 Sr 115           ppm This analysis represents a super-composite for DSDP Sites 417 and 418 combined. The recipe for this composite can be found in Appendix 1. Staudigel et al. 1996
Radiolarian Clay 38 Sr 115         2 ppm The bulk composition of the radiolarian clay was calculated by first estimating the composition of the average clay in the region and then diluting it by 30% biogenic SiO2. Plank & Langmuir 1998
South Sandwich Trench 38 Sr 115           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Upper Continental Crust 38 Sr 117.5           ppm Average composition of the Upper Crust as derived from composites taken from ODP sites 417/418. Values are taken from varying sources on the same composites in order to compare and contrast with 735B gabbroic composition which should closeley resemble each other. Hart et al. 1999 Staudigel et al. 1995
Smith et al. 1995
Hart & Staudigel 1989
Staudigel et al. 1989
Allende Meteorite 38 Sr 12           wt%ox Bulk meteorite composition values are from an unpublished reference by E. Jarosewich. Martin & Mason 1974
Middle Continental Crust   Sr/Nd 12             Rudnick & Fountain 1995
Central East China Craton   Sr/Nd 12.3             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Murchison River 38 Sr 12.326             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
Granites 38 Sr 120           ppm Condie 1993
MORB Basaltic Glass 38 Sr 120           ppm MORB Glass WASRAI2-057-006 from the East Pacific Rise near the Clipperton Transform that along with 4 other samples from this region form a coherent liquid line of descent for fractional crystalization from the highest MgO magma. Klein 2004 Lehnert 2000
Mishash Formation 38 Sr 1200         3 ppm Calcareous pelletal and bone phosphorite, associated with limestones and cherts of the Mishash Formation Hamakhtesh haQatan carbonate platform, Israel. P2O5: 22-33%. Uranium is average value of 14 samples of P2O5 in excess of 20%. Chemically Determined, U.S. Geological Survey Lab. Detection Limit = 2 ppm. Altschuller 1980 Mazor 1963
Granites 38 Sr 122           ppm Condie 1993
MORB Basaltic Glass 38 Sr 122           ppm MORB Glass ODP0142-0864A-001M-003/0-3 from the East Pacific Rise near the Clipperton Transform that along with 4 other samples from this region form a coherent liquid line of descent for fractional crystalization from the highest MgO magma. Klein 2004 Lehnert 2000
Central America Trench 38 Sr 1227           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Australian Granite 38 Sr 124         13 ppm Analysis of Himalayan Leucogranite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Inger & Harris 1993
Felsic Volcanics 38 Sr 125           ppm Condie 1993
Hydrothermal Vents 38 Sr 126             Global content of strontium at hydrothermally active areas. Sr levels from vent fluids are linearly correlated with Ca and Cl which is indicative of control of Sr by chloro-complexing along with Sr precipitation in sloid solution in secondary Ca minerals (Epidote). Palmer & Edmond 1989
Carbonate Turbidites 38 Sr 1285         87 ppm Average of 87 Cenozoic carbonate turbidites in 100 m of the total of 500 m ODP section. Plank & Langmuir 1998
Transitional Mid-Ocean Ridge Basalts 38 Sr 129           ppm Compositie analyses on T-MORB glasses from the Mid-Atlantic Ridge as reported in the RidgePetDB database. Major and most trace elements for this T-type MORB are taken from the sample VEM0025-001-022. Klein 2004 Lehnert 2000
Cratonic Xenoliths   Rb/Sr 129.8             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gregoire et al. 2002
Solid Earth 38 Sr 13           ppm Bulk elemental composition of the Solid Earth with concentrations given in ppm (and wt% where noted). McDonough 2004
Solid Earth 38 Sr 13           µg/g Compostioinal models for the bulk Earth, core and silicate Earth are modified after McDonough & Sun (1995). McDonough 1998
Talkeetna Arc Plutonic Rocks 38 Sr 13   1.4     16 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of pyroxenites from the Tonsina section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Upper Continental Crust   Sr/Nd 13             Rudnick & Fountain 1995
Colorado River 38 Sr 13.25             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
Depleted D-MORB basalts   Sr/Nd 13.74             Constant' ratios in MORB as taken from the D-MORB (Depleted MORB) compilation as explained in Salters and Stracke 2003.  This compliation of 232 ratio values represent one method of removing low degree melts from MORB data.  All values have gone thru a series of tests and must meet certain criteria to be added to the D-MORB compilation.  This in turn leads to better estimates of values for the Depleted Mantle. Salters & Stracke 2004
Depleted D-MORB basalts   Sr/Nd 13.74             Constant' ratios in MORB as taken from the D-MORB (Depleted MORB) compilation as explained in Salters and Stracke 2003.  This compliation of 232 ratio values represent one method of removing low degree melts from MORB data.  All values have gone thru a series of tests and must meet certain criteria to be added to the D-MORB compilation.  This in turn leads to better estimates of values for the Depleted Mantle. Salters & Stracke 2004
Angrite Angra Dos Reis 38 Sr 130           µg/g Trace element compositional data on Angra dos Reis Angrite. Mittlefehldt 2004 Mittlefehldt & Lindstrom 1990
Basalts 38 Sr 132           ppm Condie 1993
Nanno Ooze 38 Sr 1326         2 ppm Based on the nanno ooze of the nearby Site 320 (Hole et al., 1984) since no geochemical data exists for Site 321. Plank & Langmuir 1998
Arenaceous Rocks 38 Sr 133         2754 ppm Average of 2628 subsamples and 126 composites. Gao et al. 1998
MORB Basaltic Glass 38 Sr 133           ppm MORB Glass MELPHNX-2-GC083 from the East Pacific Rise near the Clipperton Transform that along with 4 other samples from this region form a coherent liquid line of descent for fractional crystalization from the highest MgO magma. Klein 2004 Lehnert 2000
MORB Basaltic Glass 38 Sr 134           ppm MORB Glass MELPHNX-2-068-001 from the East Pacific Rise near the Clipperton Transform that along with 4 other samples from this region form a coherent liquid line of descent for fractional crystalization from the highest MgO magma. Klein 2004 Lehnert 2000
Oceanic Crust 38 Sr 134           ppm Minor and trace element averages for the Oceanic crust based on Hofmann 1988 and Wedepohl 2012 Wedepohl & Hartmann 1994 Wedepohl 1981
South Antilles Trench 38 Sr 135           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 3 or low. Plank & Langmuir 1998
Felsic Volcanics 38 Sr 136           ppm Condie 1993
Melitite-rich Chondrules 38 Sr 136     110 200 10 ppm Melilite-rich chondrules which are spherical aggregates of melilite, Ti-rich fassaite, spinel and anorthite with a coarsely crystalline igneous texture.  These chondrules have high Al2O3 content as well as CaO and an unfractionated REE pattern that averages 10-15 times normal chondritic abundances. Martin & Mason 1974
Shales 38 Sr 136           ppm Condie 1993
ALH 77005 Meteorite 38 Sr 14   3       ppm Mars elemental abundances as given by ALH77005 meteorite, which is a lherzolitic shergottite, as given in Lodders 1988. McSween, Jr. 2004 Lodders 1998
Cratonic Xenoliths 38 Sr 14.3           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004
Arenaceous Rocks 38 Sr 140         121 ppm Average of 110 subsamples and 11 composites. Gao et al. 1998
DSDP/ODP Site 801 38 Sr 140           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
DSDP/ODP Site 801 38 Sr 140           ppm Compositional estimates of Bulk Marianas sediment as observed from the sediment column of DSDP Hole 801. Values derived according to methods given in Plank and Ludden 1992. Elliot et al. 1997
Tongan Basalts   87Sr/86Sr 140.70406         7   Average major and trace element values for Tongan Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Bone Valley Formation 38 Sr 1400         8 ppm Pebbly and pelletal phosphorite from sandy and clayey phosphorites reworked from phosphatic limestones and dolomites of the Hawthorn carbonate platform (Bone Valley Formation, Florida, U.S.A.); average eight composites: four pebble and four pellet concentrates composited from one week's production at each of four mining localities in Land Pebble Field, representative of approximately 100,000 tons, P2O5: 30-35%. Detection Limit = 2 ppm. Altschuller 1980
Fresh Mid-Ocean Ridge Basalts 38 Sr 141.42         55 ppm Average major and trace element values for Primitive MORB given in weight percent and parts per million respectively. Kelemen et al. 2004
Boninites 38 Sr 141.84         77 ppm Average major and trace element values from Primitive Arc Boninites (High-Mg Andesites) given by Kelemen et al. 2004. All major element oxide values are given in wt. % and trace elements in ppm. Kelemen et al. 2004
D'Orbigny Angrite 38 Sr 142           µg/g Trace element compositional data on D'Orbigny Angrite. Mittlefehldt 2004 Mittlefehldt et al. 2002
N-MORB 38 Sr 142           ppm Analyses on N-MORB from the Northern section of the East Pacific Rise as reported by Niu et al. 1999. Klein 2004 Niu et al. 1999
North American Shale Composite (NASC) 38 Sr 142           ppm Major oxide and minor element compositions for North American Shale Composite. No source reference found in text.  Condie 1993
Granites 38 Sr 145           ppm Condie 1993
Basalts 38 Sr 1469         7 ppm Average major and trace element compositions for Italian Roman V.F. Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Conticelli et al. 1997
Basalts 38 Sr 1470         6 ppm Average major and trace element values for West African (Cameroon Line) High Sr Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Marzoli et al. 2000
Oceanic Plateaus 38 Sr 15           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Ecuador locality, sample EQ1. Values taken from Reynaud et al. 1999. Kerr 2004 Reynaud et al. 1999
Spinel Peridotites   Sr/Nd 15 14 7         This average Sr/Nd ratio only includes samples for which both Sr and Nd were determined. McDonough 1990
Primitive Mantle   Sr/Nd 15.3             Element ratios from the Primitive Mantle as given by Hofmann 1988. Gao et al. 1998 Hofmann 1988
Peninsular Range Batholith   Sr/Nd 15.69             Analysis of Archean Calc-Alkaline Type 1 & 2 Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Sylvester 1995
Basalts 38 Sr 150           ppm Condie 1993
Felsic Volcanics 38 Sr 150           ppm Condie 1993
Felsic Volcanics 38 Sr 150           ppm Condie 1993
Parana River Particulates 38 Sr 150           µg/g Elemental particulates in major South American rivers. Averages for major elements are weighted according to the suspended load prior to the construction of dams, for trace elements the average contents are mean values. Martin & Meybeck 1979
River Particulates 38 Sr 150           µg/g World averages for suspended matter in major world rivers. This particular array of rivers can lead to slightly biased results for certain trace elements since those elements are usually measured in temperate and/or arctic rivers. All averages for major elements are weighted according to the suspended load prior to the construction of dams, as for trace elements the average contents are mean values. Martin & Meybeck 1979
Oulad Abdoun Basin 38 Sr 1500         4 ppm Clayey pelletal phosphorites, associated with limestones, cherts and clays of Oulad Abdoun Basin carbonate platform of Morocco; composite samples of mining production in four localities, representing 10,000 tons, P2O5: 33%. Detection Limit = 2 ppm. Altschuller 1980
Carbonate 38 Sr 1504         13 ppm The average Ca-carbonate in this unit is 80% based on Leg 67 shipboard carbonate bomb analyses. The analyses have been adjusted accordingly for 45% CaO. Plank & Langmuir 1998
Continental Intraplate Xenoliths 38 Sr 155           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Eggins et al. 1998
Oceanic Plateaus 38 Sr 156           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Colombia locality, sample SDB18. Values taken from Kerr et al. 1997 and Hauff et al. 2000b. Kerr 2004 Kerr et al. 1997
Hauff et al. 2000
Protolith Gabbros at ODP Site 735 38 Sr 157         8 ppm Average of 8 protolith samples as defined in the footnote of Table 2 and Table 1. Hart et al. 1999
ODP Site 735 38 Sr 157.8 161.7       22 ppm Average of 22 composite strip samples as defined in Table 1. Hart et al. 1999
Central East China Craton   Sr/Nd 16             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith using the median values of Rudnick & Fountain (1995). Gao et al. 1998
Continental Crust   Sr/Nd 16             Major and minor element composition of the Bulk Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Continental Crust   Sr/Nd 16             Rudnick & Fountain 1995
Oceanic Plateaus 38 Sr 16           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau DSDP site 150, sample 11-2 and 63-67. Values taken from Hauff et al. 2000b. Kerr 2004 Hauff et al. 2000
Felsic Volcanics 38 Sr 160           ppm Condie 1993
Marianas Trench 38 Sr 161           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Pelagic Clay 38 Sr 163         3 ppm Middle 30 m of a total section that is 335 m thick (Site 581) dominated by pelagic clay. Plank & Langmuir 1998
Phanerozoic Flood Basalts 38 Sr 163         1 ppm Major and trace element compositions as well as selected isotopic composition for Parana Flood Basalts in Esmeralda (High Ti). Farmer 2004 Peate 1997
Garonne River Particulates 38 Sr 164           µg/g Elemental particulates in major European rivers. Averages for major elements are weighted according to the suspended load prior to the construction of dams, for trace elements the average contents are mean values. Martin & Meybeck 1979
Nankai Trench 38 Sr 165           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Pelagic Clay 38 Sr 165         55 ppm ODP Site through the toe of the accretionary prism into the basement. Only 350 m of sediments underneath the decollement are considered and used in a simple mean for this homogeneous sedimentary section that was sampled 55 times for every 3-13 m of section. Plank & Langmuir 1998
Silicate Earth 38 Sr 17.8           ppm Abundances of refractory lithophile elements along with K, Rb and Cs for models of the Bulk Silicate Earth. Data taken from various sources that agree Earth experienced some depletion of semi-volatile to volatile elements in relation to refractory lithophile elements during accretion. McDonough et al. 1992 Taylor & McLennan 1985
Felsic Volcanics 38 Sr 170           ppm Condie 1993
Oceanic Plateaus 38 Sr 174           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau ODP site 807, sample 75-4 and 46-48. Values taken from Mahoney et al. 1993a. Kerr 2004 Mahoney et al. 1993
Volcanoclastic Turbidites 38 Sr 175         43 ppm Average of 43 combined analyses weighted by interval height. Plank & Langmuir 1998
Radiolarian Clay 38 Sr 179         8 ppm The bulk composition of the radiolarian clay was calculated by first estimating the composition of the average clay in the region and then diluting it by 15% biogenic SiO2. Plank & Langmuir 1998
Radiolarian Clay 38 Sr 179         8 ppm The bulk composition of the radiolarian clay was calculated by first estimating the composition of the average clay in the region and then diluting it by 15% biogenic SiO2. Plank & Langmuir 1998
Olivine Chondrules 38 Sr 18     13 20 3 ppm Olivine rich chondrules and aggregates that have an REE abundance pattern averaging three times that of chondrites with a slight Ce anomaly and a slight negative Eu anomaly. Martin & Mason 1974
Sandstones 38 Sr 18           ppm Condie 1993
Primitive Mantle 38 Sr 18.2           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Hofmann 1988
Primitive Mantle 38 Sr 18.21           ppm Trace element abundances in the Earth's Primitive mantle given in ppm as was first found by Hart and Zindler 1986. The major element factor of 2.51 was used to obtain the mantle values of the refractory trace elements from the abundances of C1 Carbonaceous chondrites. Hofmann 1988 Hart & Zindler 1986
Silicate Earth 38 Sr 18.21           ppm Abundances of refractory lithophile elements along with K, Rb and Cs for models of the Bulk Silicate Earth. Data taken from various sources that agree Earth experienced some depletion of semi-volatile to volatile elements in relation to refractory lithophile elements during accretion. McDonough et al. 1992 Hofmann 1988
Talkeetna Arc Plutonic Rocks 38 Sr 18.4   1.5     17 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of pyroxenites from the Tonsina section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Continental Intraplate Xenoliths 38 Sr 180           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Johnson et al. 1996
Marine Pelagic Clay 38 Sr 180           ppm Average concentrations for various elements enriched in Oceanic Pelagic Clays.  Compared to the element values of Shales, the Pelagic Clays are relatively similar with few exceptions.   All sea salt components are subtracted from the sample analysis assuming all chloride is of seawater origin. Li 1991 Turekian & Wedepohl 1961
ODP/DSDP Site 417/418 38 Sr 180           ppm Super composite DSDP/ODP Site 417/418. Measurements by XRF. Staudigel et al. 1995
E-MORB 38 Sr 181           ppm Compositie analyses on E-MORB glasses from the Mid-Atlantic Ridge as reported in the RidgePetDB database. Major and most trace elements for this E-type MORB are taken from the sample EW19309-004-002. Klein 2004 Lehnert 2000
DSDP/ODP Site 800 38 Sr 183           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Silty Mud 38 Sr 184         16 ppm The hemi-pelagic clay analyses where averaged over 10 m intervals and then averaged down-unit. Plank & Langmuir 1998
N-MORB 38 Sr 188           ppm Analyses on N-MORB from the Mid-Cayman Rise. Glass compositions reported in ReidgePetDB for sample KNO0054-027-005 then augmented with BA, V and Y data on a similar sample reported by Thompson et al. 1980 and the sole isotopic analysis of a Mid-Cayman rise basalt from RidgePetDB. Klein 2004 Thompson et al. 1980
Australian Granite   Rb/Sr 19.55         6   Analysis of A-type Padthaway Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Turner et al. 1992
Primitive Mantle 38 Sr 19.6           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Hart & Zindler 1986
Primitive Mantle 38 Sr 19.9   1.99       ppm Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Silicate Earth 38 Sr 19.9   1.99       ppm Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Continental Intraplate Xenoliths 38 Sr 1900           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov 1998
Monterey Formation 38 Sr 1900         5 ppm Dark pelletal shaly phosphorites, associated with radiolaran chert and organic-rich bentonic shales of the Monterey formation Tertiary geosyncline in California, U.S.A., P2O5: 15-20%. Detection Limit = 2 ppm. Altschuller 1980
Fresh MORB in Indian Ocean 38 Sr 191           ppm Analyses on MORB glasses from the Indian Ocean as given by Klein et al. 1991. Klein 2004 Klein et al. 1991
Oceanic Plateaus 38 Sr 193           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 750, sample 17-3 and 23-26.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
Lower Continental Crust 38 Sr 196           µg/g Major and trace element compositional estimates of the lower continental crust as given by Rudnick and Taylor 1987 using lower crustal xenoliths from the McBride Province, Queensland, Australia. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Rudnick & Taylor 1987
Pelagic Clay 38 Sr 196         6 ppm Average of 6 analyses weighted by depth interval. Plank & Langmuir 1998
Pelagic Clay 38 Sr 196           ppm The uppermost layer of the sediment from Hole 801 of ODP Leg 129. Values given are estimates of the composition of this 65m layer based on the methodology of Plank and Ludden 1992. Elliot et al. 1997
Early Archean Upper Crust   Ba/Sr 2             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Archean Upper Crust   Ba/Sr 2             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
MacKenzie River 38 Sr 2             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Wadleigh et al. 1985
Oceanic Plateaus   87Sr/86Sr 2             Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 747, sample 16-5 and 103-6.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
Tisza River 38 Sr 2.043             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Yangtze River 38 Sr 2.053             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Early Archean Upper Crust   Ba/Sr 2.1             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Australian Granite   Rb/Sr 2.19         704   Analysis of Lachlan Fold Belt Cordierite Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Chappell & White 1992
Upper Continental Crust   Ba/Sr 2.2             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. The UCC is calculated from data in Tables 4-6 with a weight ratio for Archean:Proterozoic:Phanerozoic = 50:30:20 that can be further divided into 10% Early and 90% Late Archean; 50% Early and 25% Middle and 25% Late Proterozoic; and 50% Paleozoic and 50% Mesozoic-Cenozoic. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Upper Continental Crust   Ba/Sr 2.3             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. In this model 5 and 10 km extra crust is added to the present-day upper-crustal layer for Phanerozoic and Precambrian areas, respectively. The UCC is calculated from data in Tables 4-6 with a weight ratio for Archean:Proterozoic:Phanerozoic = 50:30:20 that can be further divided into 10% Early and 90% Late Archean; 50% Early and 25% Middle and 25% Late Proterozoic; and 50% Paleozoic and 50% Mesozoic-Cenozoic. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Proterozoic Upper Crust   Ba/Sr 2.4             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Proterozoic Upper Crust   Ba/Sr 2.4             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Middle Proterozoic Upper Crust   Ba/Sr 2.4             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Murray River 38 Sr 2.454             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989 Goldstein & Jacobsen 1987
Dniepr River 38 Sr 2.5             Estimated Sr concentrations derived from fluvial Ca data due to the precipitation of Sr with calcium carbonates in the sea. Sr concentrations were determined using standard mass spectrometric techniques. Palmer & Edmond 1989
Don River 38 Sr 2.5             Estimated Sr concentrations derived from fluvial Ca data due to the precipitation of Sr with calcium carbonates in the sea. Sr concentrations were determined using standard mass spectrometric techniques. Palmer & Edmond 1989
Dvina River 38 Sr 2.5             Estimated Sr concentrations derived from fluvial Ca data due to the precipitation of Sr with calcium carbonates in the sea. Sr concentrations were determined using standard mass spectrometric techniques. Palmer & Edmond 1989
Early Proterozoic Upper Crust   Ba/Sr 2.5             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Proterozoic Upper Crust   Ba/Sr 2.5             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Middle Proterozoic Upper Crust   Ba/Sr 2.5             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Protolith Gabbros at ODP Site 735   Sr/Sr* 2.5         8   Average of 8 protolith samples as defined in the footnote of Table 2 and Table 1. Hart et al. 1999
Maas River 38 Sr 2.506             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Mesozoic & Cenozoic Upper Crust   Ba/Sr 2.6             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Paleozoic Upper Crust   Ba/Sr 2.6             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Danube River 38 Sr 2.759             Strontium content of major world rivers as measured in micromoles per kilogram. All values obtained using standard mass specrometric techniques and used to determine riverine flux of strontium. Palmer & Edmond 1989
Mesozoic & Cenozoic Upper Crust   Ba/Sr 2.8             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Paleozoic Upper Crust   Ba/Sr 2.8             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
CI Chondrites 38 Sr 2.88   0.04         CI Meteorite derived solar system abundances of various elements. Palme & Jones 2004
Solar Photosphere 38 Sr 2.9   0.06         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 38 Sr 2.97   0.07         Elemental solar photospheric abundances as given by various references. Palme & Jones 2004 Grevesse & Sauval 1998
Silicate Earth 38 Sr 20           µg/g Compostioinal models for the bulk Earth, core and silicate Earth are modified after McDonough & Sun (1995). McDonough 1998
Silicate Earth 38 Sr 20           ppm Composition of the Silicate Earth as given by elemental abundances in ppm (and wt%). McDonough 2004
Primitive Mantle 38 Sr 20.3           ppm Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004
Primitive Mantle 38 Sr 20.3   2.03       ppm Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: RLE Palme & O'Neill 2004
Interlayered Clay & Chert 38 Sr 200         12 ppm This interval is estimated to be 25% chert based on core descriptions. Average clay from 30-58 m depth is diluted with 25% chert at 100% Si. Average of 12 cherts and clays using DCP analyses. Plank & Langmuir 1998
Marine Pelagic Clay 38 Sr 2000           ppm Average concentrations of elements in oceanic pelagic clays.  The elemental values found in the Pelagic clays give good indications on river input of elements to the oceans.  From river sources to mid oceanic ridge sinks this is also a good indicator of atmospheric conditions for varying periods of world history.   Li 1982 Turekian & Wedepohl 1961
Felsic Volcanics 38 Sr 201         972 ppm Average of 895 subsamples and 77 composites. Gao et al. 1998
Greywackes 38 Sr 201           ppm Total average of group averages from USA, Canada, Australia, Sri Lanka and Germany using an equal statistical weight. Wedepohl 1995
Scotia Island Basalt 38 Sr 202         16 ppm Average major and trace element values for Scotian Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Pelagic Clay 38 Sr 203         8 ppm Average of 8 sediments that are all younger than Campanian-Maastrichtian and are typically Fe-rich clays. The basal sediments may be of hydrothermal origin. Plank & Langmuir 1998
Cratonic Xenoliths 38 Sr 20379           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gregoire et al. 2002
South Qinling Belt in China 38 Sr 204           ppm Compostional estimate of the South Qinling orogenic belt. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Yangtze Craton 38 Sr 206           ppm Compostional estimate of the Yangtze craton. Gao et al. 1998
Continental Intraplate Xenoliths 38 Sr 20850           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
North Qinling Belt in China 38 Sr 209           ppm Compostional estimate of the North Qinling orogenic belt. The middle crust of the North Qinling belt is assumed to consist of the underthrusted South Qinling middle crust (see text for explanation). Gao et al. 1998
South Qinling Belt in China 38 Sr 209           ppm Compostional estimate of the South Qinling orogenic belt. Gao et al. 1998
Primitive Mantle 38 Sr 21           ppm Concentration of the Primitive mantle as given by McDonough & Frey 1989 and Sun 1982. Values given are placed next to average concentrations of Continental lithospheric mantle in an effort to calculate the proportional contribution to the Primitive mantle. This calculation assumes that the Continental lithospheric mantle is 1.45% the mass of the Primitive mantle. McDonough 1990 McDonough & Frey 1989
Sun 1982
Silicate Earth 38 Sr 21.1           ppm Abundances of refractory lithophile elements along with K, Rb and Cs for models of the Bulk Silicate Earth. Data taken from various sources that agree Earth experienced some depletion of semi-volatile to volatile elements in relation to refractory lithophile elements during accretion. McDonough et al. 1992 Sun 1982
Sun & McDonough 1989
McDonough & Frey 1989
Tonalites-Trondhjemites-Granodiorites   Sr/Nd 21.21         355   Analysis of Archean Tonalite-Trondhjemite-Granodiorite (TTG) represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Martin 1995
Ferruginous Clay 38 Sr 211         2 ppm The proportions of the Fe-rich and carbonate-rich clays are roughly equal based on barrel sheet descriptions. One analysis of each rock type is simply averaged. Plank & Langmuir 1998
Ultrabasic Precambrian Granulites 38 Sr 212         14 ppm Shaw et al. 1986
Oceanic Plateaus 38 Sr 214           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 749, sample 15-5 and 125-7.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
Archean Terrains 38 Sr 215           ppm Taylor & McLennan 1995
Brown Clay 38 Sr 216         4 ppm Average of 4 brown clays using DCP analyses. Plank & Langmuir 1998
Cascadia Trench 38 Sr 216           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 4 or low. Plank & Langmuir 1998
Clastic Turbidites 38 Sr 216         28 ppm In this homogeneous turbidite unit 28 analyses were used to calculate an average by weighting interval height and lithology. Proportions of sand, silt and clay were estimated from core descriptions. Plank & Langmuir 1998
Phanerozoic Flood Basalts 38 Sr 216         1 ppm Major and trace element compositions as well as selected isotopic composition for Parana Flood Basalts in Gramado (Low Ti). Farmer 2004 Peate 1997
Ryuku Trench 38 Sr 217           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 4 or low. Plank & Langmuir 1998
Carbonates 38 Sr 218         50 ppm Average of 45 subsamples and 5 composites. Gao et al. 1998
Java Trench 38 Sr 218           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
South Qinling Belt in China 38 Sr 218           ppm Compostional estimate of the Southern Qinling orogenic belt. Average compostion of granulite terrains and calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Interlayerd Clay & Chert 38 Sr 22         2 ppm Bottom 65 m of a total section that is 335 m thick (Site 581) dominated by interlayered clay and chert. Plank & Langmuir 1998
Solar System 38 Sr 22.9             Anders & Ebihara 1982 Cameron 1982
Graywackes 38 Sr 220           ppm Condie 1993
Cratonic Xenoliths 38 Sr 221           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004
Basalts 38 Sr 222           ppm Condie 1993
Felsic Post-Archean Granulites 38 Sr 222 185       215 ppm Median values are used instead of average values in the model calculations to avoid outlyers of small sample populations. Rudnick & Fountain 1995
Kerm Trench 38 Sr 222           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 4 or low. Plank & Langmuir 1998
Basalts 38 Sr 2223         27 ppm Average major and trace element compositions for Western U.S. Sierra Nevada Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Farmer et al. 2002
Basic Precambrian Granulites 38 Sr 223         25 ppm Shaw et al. 1986
South Qinling Belt in China 38 Sr 224           ppm Compostional estimate of the South Qinling orogenic belt. Includes sedimentary carbonates. Gao et al. 1998
Talkeetna Arc Plutonic Rocks 38 Sr 225   9     6 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of garnet granulites from the Tonsina section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Mafic Archean Granulites 38 Sr 227 156       89 ppm Median values are used instead of average values in the model calculations to avoid outlyers of small sample populations. Rudnick & Fountain 1995
Talkeetna Arc Plutonic Rocks 38 Sr 228   4     13 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of Intermediate to felsic plutons from the Talkeetna section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Talkeetna Arc Plutonic Rocks 38 Sr 229   10     6 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of garnet granulites from the Tonsina section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Serra De Mage Eucrite 38 Sr 23           µg/g Trace element compositional data on Serra de Mage Eucrite. Mittlefehldt 2004 Barrat et al. 2000
McCarthy et al. 1973
Solar System 38 Sr 23.5   1.904     18   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Australian Granite   Sr/Nd 23.73         8   Analysis of Oceanic Arc Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Whalen 1985
Solar System 38 Sr 23.8   1.9754     15   Anders & Ebihara 1982
Lower Continental Crust 38 Sr 230           ppm Taylor & McLennan 1995
Lower Continental Crust 38 Sr 230           µg/g Major and trace element compositional estimates of the lower continental crust as given by Taylor and McLennan 1985, 1995 using average lower crustal abundances. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Taylor & McLennan 1985
Taylor & McLennan 1995
Marianas Basalt 38 Sr 231.78         51 ppm Average major and trace element values for Marianas Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Tonga Trench 38 Sr 233           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Mexico Trench 38 Sr 234           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 2 or high. Plank & Langmuir 1998
Oceanic Plateaus 38 Sr 234           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 747, sample 16-5 and 103-6.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
Phanerozoic Flood Basalts 38 Sr 234         18 ppm Major and trace element compositions as well as selected isotopic composition for Deccan Traps Flood Basalts Kolhapur (Low Ti). Farmer 2004 Lightfoot et al. 1990
Australian Granite 38 Sr 235         1074 ppm Analysis of Lachlan Fold Belt Hornblende Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Wormald & Price 1988
Talkeetna Arc Plutonic Rocks 38 Sr 235   5     13 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of Intermediate to felsic plutons from the Talkeetna section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Basalts 38 Sr 236           ppm Condie 1993
Granites 38 Sr 236         402 ppm Average of 369 subsamples and 33 composites. Gao et al. 1998
Frankfort Howardites 38 Sr 24           µg/g Trace element compositional data on Frankfort Howardite. Mittlefehldt 2004 McCarthy et al. 1972
Palme et al. 1978
Archean Terrains 38 Sr 240           ppm Taylor & McLennan 1995
Basalts 38 Sr 240           ppm Condie 1993
Graywackes 38 Sr 240           ppm Condie 1993
Aleutian Trench 38 Sr 245           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Carbonates 38 Sr 245         2038 ppm Average of 1922 subsamples and 116 composites. Gao et al. 1998
Pelagic Clay 38 Sr 245         56 ppm Average of 56 sediments of Cretaceous age representing a diverse lithology including brown, gray, nanno, radiolarian and streaky clays. This section also includes turbidites and is very similar in composition as Site 765 in the East Sunda trench. This average is therefore based on both Site 261 and 765 data. Plank & Langmuir 1998
Pelagic Clay 38 Sr 245         56 ppm Average of 56 sediments of Cretaceous age representing a diverse lithology including brown, gray, nanno, radiolarian and streaky clays. This section also includes turbidites and is very similar in composition as Site 765 in the East Sunda trench. This average is therefore based on both Site 261 and 765 data. Plank & Langmuir 1998
Talkeetna Arc Plutonic Rocks 38 Sr 248   4     42 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of Lavas, tuffs and volcaniclastic samples from the Talkeetna section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Continental Intraplate Xenoliths 38 Sr 249           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Glaser et al. 1999
Diatome Ooze 38 Sr 249         4 ppm This ash-rich diatom ooze contains 50% diatoms and 7% ash particles. The individual analyses therefore have been diluted with 65% SiO2 based on an average 75% SiO2 in the diatoms. The analyses were further enriched by adding an average Aleutian andesite (Plank & Langmuir, 1988) to represent the ash layers in this section. Plank & Langmuir 1998
Talkeetna Arc Plutonic Rocks 38 Sr 249   2     86 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of Lavas, tuffs and volcaniclastic samples from the Talkeetna section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Volcanoclastic Turbidites 38 Sr 249           ppm Estimates of the composition of the Volcaniclastic Turbidite section of the sediment column from DSDP Hole 801. Elliot et al. 1997
Volcanoclastic Turbidites 38 Sr 249         13 ppm Average of 13 volcaniclastic turbidites corrected for pure silica using down-core logging for SiO2 contents, in a similar fashion as for the chert sections. Plank & Langmuir 1998
Primitive Mantle 38 Sr 25           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Jagoutz et al. 1979
Early Archean Upper Crust 38 Sr 251           ppm Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Sumatra Trench 38 Sr 251           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 3 or moderate. Plank & Langmuir 1998
Metalliferous Clay 38 Sr 252         12 ppm Average of 12 metalliferous clays between 10-30 m depth using DCP analyses. Plank & Langmuir 1998
Pelagic Clay 38 Sr 252         6 ppm Average of 6 analyses weighted by depth interval. Plank & Langmuir 1998
Andesites 38 Sr 253           ppm Condie 1993
Volcanoclastic Sediment 38 Sr 253         15 ppm Average of 15 volcaniclastic sediments using DCP analyses as weighted by the height of each drilled interval. Plank & Langmuir 1998
Yangtze Craton 38 Sr 254           ppm Compostional estimate of the Yangtze craton. Average compostion of granulite terrains and calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Paleozoic Upper Crust 38 Sr 256           ppm Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Turbidites 38 Sr 256         4 ppm Average of 4 Quaternary turbidites from the Ganges cone after McLennan et al. (1990) assuming that equal proportions of fine (clay-silt) and coarse (silt-sand) units. Plank & Langmuir 1998
Amphibolites 38 Sr 258         189 ppm Average of 165 subsamples and 24 composites. Gao et al. 1998
Andesites 38 Sr 259           ppm Condie 1993
Phanerozoic Flood Basalts 38 Sr 259         9 ppm Major and trace element compositions as well as selected isotopic composition for Siberian Traps Flood Basalts Nadezhdinsky (High Ti). Farmer 2004 Wooden et al. 1993
Island Arcs   Sr/Nd 26.78         323   Analysis of Continental Arc Granite from the Peninsula Range Batholith represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Silver & Chappell 1998
Continental Intraplate Xenoliths 38 Sr 26.9           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Basalts 38 Sr 260           ppm Condie 1993
Continental Crust 38 Sr 260           µg/g Major and trace element compositional estimates of the Bulk Continental Crust given by Taylor and McLennan 1985 & 1995. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Taylor & McLennan 1985
Taylor & McLennan 1995
Continental Crust 38 Sr 260           ppm Taylor & McLennan 1995
Continental Crust 38 Sr 260           ppm Enrichment of elements in the bulk continental crust given by Rudnick & Gao from Chapter 3.1 of the Treatise on Geochemistry 2004. Palme & O'Neill 2004 Rudnick & Gao 2004
Mesozoic & Cenozoic Upper Crust 38 Sr 262           ppm Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Paleozoic Upper Crust 38 Sr 262           ppm Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Mafic Granulites 38 Sr 263         128 ppm Average of 93 subsamples and 35 composites. Gao et al. 1998
Yangtze Craton 38 Sr 263           ppm Compostional estimate of the Yangtze craton. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Graywackes 38 Sr 265           ppm Condie 1993
Interlayered Chert & Limestone 38 Sr 265         5 ppm Average of 5 chert and limestone analyses. Due to the poor recovery of these notoriously hard chert beds, this chert section may be overdiluted by silica causing an underestimation of the geochemical abundances. The dilution factors have therefore been based on the down-core logging for SiO2 contents. The logging data was also used to determine the average CaO as calcium carbonate to dilute all elements (except Sr) accordingly. Plank & Langmuir 1998
Central East China Craton 38 Sr 266           ppm Compostional estimate of the entire Central East China province. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Green Clay 38 Sr 266         3 ppm Silty clay (37.5%), clay (50%) and nannofossil ooze (12.5%) make up this section. Two analyses have been made for silty clay and the clay lithologies, whereas the ooze is assumed to contain 56% CaO, 44% CO2 and 1000 ppm Sr. Plank & Langmuir 1998
Upper Continental Crust 38 Sr 266           µg/g Estimates of trace element compositions of the Upper Continental Crust. These values are taken from Gao et al. 1998 and represent averages from surface exposures. Rudnick & Gao 2004 Gao et al. 1998
Australian Granite 38 Sr 267         8 ppm Analysis of Oceanic Arc Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Whalen 1985
Interior North China Craton 38 Sr 267           ppm Compostional estimate of the interior of the North China craton. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Interior North China Craton 38 Sr 267           ppm Compostional estimate of the interior of the North China craton. Includes sedimentary carbonates. Gao et al. 1998
Late Archean Upper Crust 38 Sr 267           ppm Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Continental Intraplate Xenoliths 38 Sr 269           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov et al. 1997
Pelites 38 Sr 269         69 ppm Average of 60 subsamples and 9 composites. Gao et al. 1998
Upper Continental Crust 38 Sr 269           ppm Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. In this model 5 and 10 km extra crust is added to the present-day upper-crustal layer for Phanerozoic and Precambrian areas, respectively. The UCC is calculated from data in Tables 4-6 with a weight ratio for Archean:Proterozoic:Phanerozoic = 50:30:20 that can be further divided into 10% Early and 90% Late Archean; 50% Early and 25% Middle and 25% Late Proterozoic; and 50% Paleozoic and 50% Mesozoic-Cenozoic. Condie 1993
Sandstones 38 Sr 27           ppm Condie 1993
Silicate Earth 38 Sr 27.7           ppm Abundances of refractory lithophile elements along with K, Rb and Cs for models of the Bulk Silicate Earth. Data taken from various sources that agree Earth experienced some depletion of semi-volatile to volatile elements in relation to refractory lithophile elements during accretion. McDonough et al. 1992 Jagoutz et al. 1979
Wanke et al. 1984
Mesozoic & Cenozoic Upper Crust 38 Sr 271           ppm Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Central East China Craton 38 Sr 273           ppm Compostional estimate of the entire Central East China province. Includes sedimentary carbonates. Gao et al. 1998
Oceanic Plateaus 38 Sr 273           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 738, sample 34-1 and 88-92. Values taken from Mahoney et al. 1995. Kerr 2004 Mahoney et al. 1995
Yangtze Craton 38 Sr 273           ppm Compostional estimate of the Yangtze craton. Includes sedimentary carbonates. Gao et al. 1998
Kermadec Basalts 38 Sr 274.9         10 ppm Average major and trace element values for Kermadec Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Talkeetna Arc Plutonic Rocks 38 Sr 277   4     7 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of garnet diorites and tonalites from the Klanelneechina section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Continental Intraplate Xenoliths 38 Sr 28.9           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov 1996
Basalts 38 Sr 280           ppm Condie 1993
Early Proterozoic Upper Crust 38 Sr 280           ppm Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Graywackes 38 Sr 280           ppm Condie 1993
Graywackes 38 Sr 280           ppm Condie 1993
Late Proterozoic Upper Crust 38 Sr 281           ppm Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Middle Continental Crust 38 Sr 281           µg/g Major and Minor element compositional estimates of the Middle Continental crust as given by Rudnick and Fountain 1995. Major element oxides are given in wt.% and trace elements abundances are given in ¿g/g or ng/g. Rudnick & Gao 2004 Rudnick & Fountain 1995
Middle Continental Crust 38 Sr 281           ppm Rudnick & Fountain 1995
Middle Continental Crust