Birkeland (field-aligned) sheet currents flowing into and out of the auroral oval as reported by Zmuda and Armstrong (1974) are integrally associated with convective motion of plasma in the magnetotail. It is demonstrated that these currents can be driven by energy supplied by the braking of this convective motion of the plasma sheet particles as they drift toward the flanks of the magnetosphere. In the ionosphere the sheet currents close as Pedersen currents, resulting in the dissipation of power, while far from the earth the closure currents, which provide the braking force for the plasma, flow in the plasma sheet approximately normal to the neutral sheet out to radial distances of about 80 RE. During periods of moderate magnetospheric activity the Birkeland currents result in a rate of dissipation of convective energy of the order of 10 GW. |