EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Duchemin et al. 1995
Duchemin, E., Lucotte, M., Canuel, R. and Chamberland, A. (1995). Production of the greenhouse gases CH4 and CO2 by hydroelectric reservoirs of the boreal region. Global Biogeochemical Cycles 9: doi: 10.1029/95GB02202. issn: 0886-6236.

The emission fluxes and the distribution of dissolved methane (CH4) and carbon dioxide (CO2) were determined for 11 sampling stations in two hydroelectric reservoirs (flooded since 1978 and 1993) located in the James Bay territory of northern Qu¿bec. The measured benthic fluxes for the two greenhouse gases were found to be either higher or similar to those determined at the water-air interface during the ice-free sampling periods. For the 2 year duration of the study, emission fluxes of CH4 to the atmosphere generally varied between 5 and 10 mg m-2 d-1, while those for CO2 ranged from 500 to 1100 mg m-2 d-1. Furthermore, through the use of static chambers at the water-air interface, we determined that the emission fluxes for the gases are controlled by molecular diffusion. Our calculated fluxes have been separated into two groups: (1) regular emission fluxes and (2) above-average emission fluxes. The first type comprises the majority of fluxes measured during the sampling periods (i.e., 88% for CH4 and 87% for CO2). The second group reflects unusual sampling conditions (e.g., strong winds, water column depths of less than 1 m, or flooded peatland mats floating at the surface). Although data for this group are limited, our preliminary results suggest that they may be an important component in an atmospheric emissions budget for large reservoirs. Concentration profiles for CH4 and CO2 dissolved in the water column clearly show that oxidation and/or horizontal advection of these gases are controlling factors in their subsequent release to the atmosphere. Most of the CH4 is oxidized within the first 25 cm above the flooded soil-water interface. Consequently, neither benthic emissions of CH4 and CO2 nor the type of flooded soil appear to control atmospheric emissions of these gases from hydroelectric reservoirs. ¿ American Geophysical Union 1995

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Biosphere/atmosphere interactions, Global Change, Biogeochemical processes, Atmospheric Composition and Structure, Geochemical cycles
Journal
Global Biogeochemical Cycles
http://www.agu.org/journals/gb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit