|
Detailed Reference Information |
Piao, S., Fang, J., Zhou, L., Zhu, B., Tan, K. and Tao, S. (2005). Changes in vegetation net primary productivity from 1982 to 1999 in China. Global Biogeochemical Cycles 19: doi: 10.1029/2004GB002274. issn: 0886-6236. |
|
Terrestrial net primary production (NPP) has been a central focus of ecosystem science in the past several decades because of its importance to the terrestrial carbon cycle and ecosystem processes. Modeling studies suggest that terrestrial NPP has increased in the northern middle and high latitudes in the past 2 decades, and that such increase has exhibited seasonal and spatial variability, but there are few detailed studies on the temporal and spatial patterns of NPP trend over time in China. Here we present the trends in China's terrestrial NPP from 1982 to 1999 and their driving forces using satellite-derived NDVI (Normalized Difference Vegetation Index), climate data, and a satellite-based carbon model, CASA (Carnegie -Ames-Stanford Approach). The majority of China (86% of the study area) has experienced an increase in NPP during the period 1982--1999, with an annual mean increase rate of 1.03%. This increase was resulted primarily from plant growth in the middle of the growing season (June to August) (about 43.2%), followed by spring (33.7%). At the national and biome levels, the relative increase is largest in spring (March--May), indicating an earlier onset of the growing season. The changes in the phase of China's seasonal NPP curve may primarily be the result of advanced growing season (earlier spring) and enhanced plant growth in summer. During the past 2 decades the amplitude of the seasonal curve of NPP has increased and the annual peak NPP has advanced. Historical NPP trends also indicated a high degree of spatial heterogeneity, coupled with regional climate variations, agricultural practices, urbanization, and fire disturbance. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Atmospheric Composition and Structure, Biosphere/atmosphere interactions (0426, 1610), Biogeosciences, Carbon cycling, Global Change, Biogeochemical cycles, processes, and modeling (0412, 0414, 0793, 4805, 4912), Hydrology, Remote sensing, CASA (Carnegie-Ames-Stanford Approach), climate change, interannual change in NPP, human activities, NPP (net primary production), NDVI (Normalized Difference Vegetation Index) |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|