|
Detailed Reference Information |
Aumont, O. and Bopp, L. (2006). Globalizing results from ocean in situ iron fertilization studies. Global Biogeochemical Cycles 20: doi: 10.1029/2005GB002591. issn: 0886-6236. |
|
Despite the growing number of in situ iron fertilization experiments, the efficiency of such fertilization to sequester atmospheric CO2 remains largely unknown. For the first time, a global ocean biogeochemical model has been evaluated against those experiments and then used to estimate the effect of a long-term and large-scale iron addition on atmospheric CO2. The model reproduces the observed timing and amplitude in chlorophyll, the shift in ecosystem composition, and the pCO2 drawdown; it also proves to be of utility in interpreting the observations. However, a full ocean fertilization during 100 years results in a 33 ¿atm decrease in atmospheric CO2, that is 2 to 3 times smaller than found previously. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Biogeosciences, Biogeochemical cycles, processes, and modeling (0412, 0793, 1615, 4805, 4912), Biogeosciences, Carbon cycling, Biogeosciences, Ecosystems, structure and dynamics, Biogeosciences, Trace element cycling |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|