|
Detailed Reference Information |
Winterhalter, D., Smith, E.J., Burton, M.E., Murphy, N. and McComas, D.J. (1994). The heliospheric plasma sheet. Journal of Geophysical Research 99: doi: 10.1029/93JA03481. issn: 0148-0227. |
|
High-resolution magnetic field and plasma data gathered by ISEE 3/ICE during several sector boundary crossings are used to investigate the narrow heliospheric current sheet (≈3¿103 km to 104 km thick), together with the heliospheric plasma sheet in which it is embedded. The heliospheric plasma sheet region is identified by a significantly enhanced plasma beta caused by density enhancements and diminished magnetic field strength and is about 20 to 30 times the thickness of the current sheet. The thickness of the heliospheric plasma sheet is found to increase exponentially with its average proton density. The heliospheric current sheet is often displaced to one edge or the other of the heliospheric plasma sheet. Further, the point of maximum plasma beta in the plasma sheet, where the magnetic field strength is at a broad local minimum, is not colocated with the heliospheric current sheet. Within the plasma sheet, changes in the magnetic pressure are balanced by corresponding changes in the plasma thermal pressure as expected for a convected solar wind feature. In addition, observations show small pressure differences between the regions upstream and downstream of the plasma sheet, which are interpreted as causing the plasma sheet to move across the spacecraft. ¿ American Geophysical Union 1994 |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Interplanetary Physics, Interplanetary magnetic fields, Interplanetary Physics, Solar wind plasma, Interplanetary Physics, Discontinuities |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|