The adequacy of the power spectrum to characterize the variations of a parameter depends on whether or not the parameter has a Gaussian distribution. We here perform very simple tests of Gaussianity on the distributions of the magnitudes of the interplanetary magnetic field, and on the distributions of the components; that is, we find the first four cumulants of the distributions (mean, variance, skewness, and kurtosis) and their solar cycle variations. We find, consistent with other recent analyses, that the traditional distributions of the 1-hour averaged magnitude are not distributed normally or lognormally as has often been assumed and the 1-hour averaged z component is found to have a nonzero kurtosis. Thus the power spectrum is insufficient to completely characterize these variations and polyspectra are needed. We have isolated variations in the 1/f frequency region of the spectrum and show that the distributions of the magnitudes have nonzero skewness and kurtosis, the magnitudes are not distributed lognormally, and the distributions of the components have nonzero kurtosis. Thus higher-order spectra are again needed for a full characterization. ¿ American Geophysical Union 1994 |