The flux density of ions created by ionization of interstellar neutral particles in the solar system and picked up by the solar wind is calculated as a function of the neutral particles. A very broad maximum occurs at an angle of 0 and a distance that depends on the density and speed of the neutral particles and on the ionization time but is typically in the general region of 10 AU. For atomic hydrogen the flux density is estimated to exceed 104 cm-2 s-1 over the distance range from a few to nearly 100 AU. The velocity space distribution of the interstellar ions is calculated under the assumption of no significant energy diffusion but with inclusion of adiabatic effects as well as a possible strong pitch angle diffusion. The energy spectrum is highly nonthermal and much broader than that of the solar wind ions; under the assumed conditions, interstellar protons are easily distinguishable from solar wind protons by their location in velocity space. If charge exchange is an important contributor to the ionization of hydrogen, the observed local intensity of interstellar protons should exhibit time variations correlated with the density changes of the solar wind stream structure. |