EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Joselyn & Holzer 1978
Joselyn, J. and Holzer, T.E. (1978). A steady three-fluid coronal expansion for nonspherical geometries. Journal of Geophysical Research 83: doi: 10.1029/JA083iA03p01019. issn: 0148-0227.

A steady three-fluid model of the solar coronal expansionk in which 4He++ ions (alphas) are treated as a nonminor species, is developed for nonspherically symmetric flow geometries of the general sort thought to be characteristic of coronal holes. It is found that the very high mass fluxes in the low corona, which are associated with rapidly diverging flow geometries, lead to a locally enhanced frictional coupling between protons and alphas and consequently to a significant reduction of the He/H abundance ratio in the lower corona from that normally predicted by multifluid models. In the models considered, the frictional drag on the protons by the alphas (a process neglected in most studies) is found to play an important role near the sun. Heavy ions, other than alphas, are treated as minor species and are seen to exhibit varying responses to the rapidly diverging flow geometries, depending on the ion mass and charge. As for the protons, the frictional effect of the alphas on the heavier ions is found to be significant in the models considered.

BACKGROUND DATA FILES

Abstract

Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit