In 1978, W. Van Tend and M. Kuperus proposed a simple catastrophe model for magnetically driving coronal mass ejections, prominence eruptions, and two-ribbon flares. Their model, which is based on simple circuit concepts, suggests that a stable configuration containing a current filament will lose equilibrium when the filament current exceeds a critical value. Here we use a two-dimensional numerical simulation to test how the Van Tend--Kuperus model works in an ideal MHD fluid. The simulation exhibits the expected loss of mechanical equilibrium near the predicted critical value, but the current filament moves only a short distance upward before coming to rest at a new equilibrium. However, this new equilibrium contains a current sheet which is resistively unstable to magnetic reconnection, and if magnetic reconnection occurs rapidly, the filament can continue to move upward at Alfv¿nic speeds. ¿ American Geophysical Union 1990 |