Shock metamorphic microstructures in the Vredefort collar include planar features, crystallographically controlled cleavage, crystallographically controlled faults, and mosaic extinction. In addition, several recrystallization textures are developed in the quartzites of the collar, and quartz c axis distributions for both primary and recrystallized quartz grains are random. The degree of recrystallization decreases away from the core-collar contact. Two events of shock deformation have been identified in the collar, and using planar feature orientations, shock pressures have been estimated using the technique of Robertson (1975). The first shock (D1) subjected the lowermost Witwatersrand rocks to shock pressures of about 150 kbar and the uppermost beds to pressures of about 60 kbar. Following a period of extensive recrystallization of the quartzites came the second shock event (D2), which was weaker than the first and subjected the lowermost strata in the collar to pressures of between 75 and 100 kbar. The D2 event has been shown to be separated in time from the D1 event. The results are used to show that the shock sources were probably within the earth and that the Vredefort ring structure has formed as a result of endogenous processes rather than hypervelocity meteorite impact. |