EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Theyer et al. 1985
Theyer, F., Herrero-Bervera, E., Hsu, V. and Hammond, S.R. (1985). The zonal harmonic model of polarity transitions: A test using successive reversals. Journal of Geophysical Research 90(B2): doi: 10.1029/JB090iB02p01963. issn: 0148-0227.

A recently developed zonal model for the last geomagnetic field reversal, which describes time- and latitude-dependent transitional behavior of intensity and inclination in terms of dominance of low-order field harmonics, was tested using a latitudinal and chronological succession of transition records. The primary data were derived from a high-resolution study of five Matuyama to Brunhes deep-sea cores collected along a 40° meridional band in the north-central Pacific. The transitions analyzed were the on-sets and terminations of the Olduvai and Jaramillo events and the Matuyama-Brunhes boundary. Supplementary data, published by previous workers, included a Jaramillo onset record from the southern Indian Ocean and a transition recorded in the Triassic Chugwater Formation of North America. In a general sense, the measured inclination and intensity records indicate the Jaramillo transitions and the last reversal to be remarkably similar to each other and to differ from the Olduvais. Crosscorrelation of the measured data sets with synthetic zonal harmonic records for the core latitudes indicates that the zonal harmonic model does predict the behavior of Matuyama-Brunhes reversal in the northern hemisphere. For the older reversals, however, the present model requires substantial modification. This is particularly so in the case of the Jaramillo onset: although two inclination and intensity records of this transition from northern and southern hemisphere sediments strongly resemble each other, the current model produces a synthetic record for one hemisphere that is incompatible with that hemisphere's measured data. Further, to model zonally the Olduvai reversals (for which a wide latitudinal northern hemisphere sampling was available), a substantially different ratio of low-order multipole components from that of the standard model is required, and the modeled solution was unsatisfactory at very low latitude. A modified zonal harmonic approach, which introduces a small sectoral component, may offer a solution to the incompatibilities uncovered by the present study.

DATABASE QUICK LINKS

MagIC Database

BACKGROUND DATA FILES

Abstract

MagIC SmartBook v1

Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit