Understanding the unusual radar scattering characteristics of sand dunes is necessary in the analysis of radar images of aeolian landscapes of the earth and of other planets. In this paper we report on airborne radar scatterometer data of sand dunes, acquired at multiple frequencies and polarizations. Radar backscatter from sand dunes is very sensitive to the imaging geometry. At small incidence angles the radar return is mainly due to quasi-specular reflection from dune slopes favorably oriented toward the radar. A peak return usually occurs at the incidence angle equal to the angle of response for the dunes. The peak angle is the same at all frequencies as computed from specular reflection theory. At larger angles the return is significantly weaker. The scatterometer measurements verified observations made with airborne and spaceborne radar images acquired over a number of dune fields in the United States, central Africa, and the Arabian peninsula. The imaging geometry constraints indicate that possible dunes on other planets, such as Venus, will probably not be detected in radar images unless the incidence angle is less than the angle of repose of such dunes and the radar look direction is approximately orthogonal to the dune trends. ¿ American Geophysical Union 1987 |