We exploit quasi-static fracture mechanics models for slip along pre-existing faults to account for the fracture structure observed along small exhumed faults and small segmented fault zones in the Mount Abbot quadrangle of Calfornia and to estimate stress drop and shear fracture energy from geological field measurements. Along small strike-slip faults, cracks that splay from the faults are common only near fault ends. In contrast, many cracks splay from the boundary faults at the edges of a simple fault zone. Except near segment ends, the cracks preferentially splay into a zone. We infer that shear displacement discontinuities (slip patches) along a small fault propagated to near the fault ends and caused fraturing there. Based on elastic stress analyses, we suggest that slip on one boundary fault ends and caused fracturing there. Based on elastic stress analyses, we suggest that slip patches preferentially led to the generation of fractures that splayed into the zones away from segment ends and out of the zones near segment ends. We estimate the average stress drops for slip events along the fault zones as ~1 MPa and the shear fracture energy release rate during slip as 5¿102-2¿104 J/m2. This estimate is similar to those obtained from shear fracture of laboratory samples, but orders of magnitude less than those for large fault zones. These results suggest that the shear fracture energy release rate increases as the structural complexity of fault zones increases. ¿ American Geophysical Union 1989 |