The dynamical processes affecting the evolution of a random internal wave field are considered. If the statistical properties of the internal wave field vary slowly with space and time, these dynamical processes can be treated as small perturbations about the local steady state of the free linear field. The time evolution of the wave field is then governed by a radiative transfer equation describing changes in the action density spectrum of the wave field along wave group trajectories. The source function describing these changes is determined by the superposition of all processes governing the generation, transfer, and dissipation of wave energy. Some terms of the source function, those corresponding to expansible processes, can be derived rigorously by using weak interaction concepts. Other terms, corresponding to nonexpansible processes which are governed locally by strongly nonlinear dynamics, cannot be determined completely. For the case where the internal wave field can adequately be described in the WKBJ approximation, a rather complete list of source terms is presented. The evaluation of these source terms is difficult partly because of their complicated functional structure and partly because the geophysical fields involved are not sufficiently known. Those source terms which have been evaluated in detail are briefly reviewed, and their implications on the energy balance of the internal wave field are discussed. |