A free-floating sediment trap equipped with a holographic particle velocimeter (HPV) was deployed for 14.4 hours at a depth of 30 m in the western North Atlantic Ocean. The system recorded the in situ sizes, shapes, orientations, and settling rates of microscopic particles moving through the laser beam. The primary data reduction revealed particles from the system's lower limit of resolution, 15 micrometers in diameter, to 250 micrometers in diameter with settling velocities ranging from 0.0190 to 0.2302 cm/s (16--198 m/day). Individual particle densities, calculated from a modified Stokes equation, ranged from 1.37 to 5.10 g/ml. The presence of high density particles was independently corroborated through individual particle analysis of the trapped material with a computer-controlled, scanning electron microscope equipped with an energy dispersive X-ray analyzer. In the future, in situ holographic systems might be used to further our understanding of primary productivity, sediment erosion/deposition, and particle aggregation/disruption/dissolution. |