Cloud microphysical processes are introduced in the precipitation parameterization of a general circulation model (GCM). Three microphysical processes are included in this representation of warm cloud precipitation: autoconversion of droplets, collection of droplets by falling raindrops, and evaporation of raindrops falling in clear sky. The mean droplet radius, r, is calculated from the cloud water mixing ratio, which is computed in the model, and the cloud droplet number concentration, N, which is prescribed. The autoconversion rate is set to zero for r<r0, a prescribed threshold mean droplet radius. We investigate the model sensitivity to r0 and to N, the cloud droplet concentration, which is linked to the concentration of cloud condensation nuclei and is likely to vary. We find that an increase in N leads to an increase in the amount of cloud water stored in the atmosphere. In further experiments the mean droplet radius used in the parameterization of cloud optical properties is calculated in the same way as in the precipitation parameterization in order to bring more consistency between the different schemes. We again investigate the model sensitivity to r0 and to N and we find that an increase in N significantly enhances cloud albedo. ¿ American Geophysical Union 1995 |