High-permeability faults, acting as preferential pathways for fluid migration, are important geological structures for fluid, energy, and solute transport. This paper examines the interaction of thermally driven convective circulation in a steeply dipping fault zone and groundwater flow through the surrounding country rock that is driven by a regional topographic gradient. We consider a geometry where a fault zone with a homogeneous, isotropic permeability is located beneath a narrow valley in a region with substantial topographic relief. System behavior is best characterized in terms of the large-scale permeabilities of the country rock and the fault zone. Using three-dimensional numerical simulations, we map in permeability space four fluid flow and heat transfer regimes within a fault zone: conductive, advective, steady convective, and unsteady convective. The patterns of fluid flow and/or heat transfer are substantially different in each of these regimes. Maximum discharge temperatures can also be plotted in permeability space; the maximum discharge temperature in the advective regime is in general lower than that in the steady convective regime. A higher basal heat flux expands the convective regime in permeability space, as does a greater fault depth. Higher topographic relief on the regional water table compresses the convective regime, with the advective regime suppressing convective circulation at lower country rock permeabilities. If convective cells with aspect ratios close to 1 cannot form, the steady convective regime is smaller in permeability space, and the boundary between steady and unsteady convection occurs at lower values of fault zone permeability. At low country rock permeabilities a water table gradient along the surface trace of the fault of approximately 0.3% suppresses convective cells; at higher country rock permeabilities, convection can be suppressed by smaller gradients on the water table. ¿ American Geophysical Union 1995 |