|
Detailed Reference Information |
Amundsen, H., Wagner, G., Oxaal, U., Meakin, P., Feder, J. and Jøssang, T. (1999). Slow two-phase flow in artificial fractures: Experiments and simulations. Water Resources Research 35: doi: 10.1029/1999WR900147. issn: 0043-1397. |
|
The slow displacement of a wetting fluid by a nonwetting fluid in models of a single fracture was studied experimentally and by computer simulations on identical geometries. The fracture was modeled by the gap between a rough plate and a smooth transparent plate, both oriented horizontally. Two different rough plates were used, a textured glass plate and a polymethyl methacrylate plate with a computer-generated pattern. A nonwetting fluid (air) was injected slowly through an inlet into the model and displaced a wetting fluid (water) initially filling the model. The aperture fields of the artificial fractures were measured using a light absorption technique. The experiments were simulated using modified invasion percolation models, making use of the measured aperture fields. The simulation models captured invasion bursts and fragmentation and redistribution of the invading air. Experiments and simulations were compared step by step, and good qualitative and quantitative agreement was found. ¿ 1999 American Geophysical Union |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Physical Properties of Rocks, Fracture and flow, Mathematical Geophysics, Modeling, Mathematical Geophysics, Fractals and multifractals |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|