A neural network approach was developed to populate a soil similarity model that was designed to represent soil landscape as spatial continua for hydroecological modeling at watersheds of mesoscale size. The approach employs multilayer feed forward neural networks. The input to the network was data on a set of soil formative environmental factors; the output from the network was a set of similarity values to a set of prescribed soil classes. The network was trained using a conjugate gradient algorithm in combination with a simulated annealing technique to learn the relationships between a set of prescribed soils and their environmental factors. Once trained, the network was used to compute for every location in an area the similarity values of the soil to the set of prescribed soil classes. The similarity values were then used to produce detailed soil spatial information. The approach also included a Geographic Information System procedure for selecting representative training and testing samples and a process of determining the network internal structure. The approach was applied to soil mapping in a watershed, the Lubrecht Experimental Forest, in western Montana. The case study showed that the soil spatial information derived using the neural network approach reveals much greater spatial detail and has a higher quality than that derived from the conventional soil map. Implications of this detailed soil spatial information for hydroecological modeling at the watershed scale are also discussed. ¿ 2000 American Geophysical Union |