Stochastic models of rainfall, usually based on Poisson arrivals of rectangular pulses, generally assume exponential marginal distributions for both storm duration and average rainfall intensity, and the statistical independence between these variables. However, the advent of stochastic multifractals made it clear that rainfall statistical properties are better characterized by heavy tailed Pareto-like distributions, and also the independence between duration and intensity turned out to be a nonrealistic assumption. In this paper an improved intensity-duration model is considered, which describes the dependence between these variables by means of a suitable 2-Copula, and introduces Generalized Pareto marginals for both the storm duration and the average storm intensity. Several theoretical results are derived: in particular, we show how the use of 2-Copulas allows reproducing not only the marginal variability of both storm average intensity and storm duration, but also their joint variability by describing their statistical dependence; in addition, we point out how the use of heavy tailed Generalized Pareto laws gives the possibility of modeling both the presence of extreme values and the scaling features of the rainfall process, and has interesting connections with the statistical structure of the process of rainfall maxima, which is naturally endowed with a Generalized Extreme Value law. Finally, a case study considering rainfall data is shown, which illustrates how the theoretical results derived in the paper are supported by the practical analysis. |