|
Detailed Reference Information |
McComas, D.J., Elliott, H.A. and von Steiger, R. (2002). Solar wind from high-latitude coronal holes at solar maximum. Geophysical Research Letters 29: doi: 10.1029/2001GL013940. issn: 0094-8276. |
|
In this study we combine Ulysses' observations from the solar wind plasma (SWOOPS) and ion composition (SWICS) instruments to study high-latitude coronal holes near solar maximum for the first time. While chromospheric and coronal composition signatures indicate that there is a unique type of solar wind, which flows from coronal holes, variations in the acceleration process produce a wide range of solar wind speeds from these holes. High-speed wind (>700 km s-1) can be produced in small as well as large holes, although the very highest speed non-transient winds do come from the centers of the largest holes. Along the edges of coronal holes, the acceleration decreases and freezing-in temperatures increase relatively smoothly into the surrounding solar wind, indicating a transition layer around the edges of coronal holes. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Interplanetary Physics, Solar wind plasma, Solar Physics, Astrophysics, and Astronomy, Coronal holes, Interplanetary Physics, Sources of the solar wind, Interplanetary Physics, Solar cycle variations |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|