|
Detailed Reference Information |
Li, Q., Jacob, D.J., Fairlie, T.D., Liu, H., Martin, R.V. and Yantosca, R.M. (2002). Stratospheric versus pollution influences on ozone at Bermuda: Reconciling past analyses. Journal of Geophysical Research 107: doi: 10.1029/2002JD002138. issn: 0148-0227. |
|
Conflicting interpretations of the spring ozone maximum observed at Bermuda (32¿N, 65¿W) have fueled the debate on stratospheric influence versus tropospheric production as sources of tropospheric ozone. We use a global three-dimensional (3-D) model of tropospheric ozone-NOx-hydrocarbon chemistry driven by assimilated meteorological observations to reconcile these past interpretations. The model reproduces the observed seasonal cycle of surface ozone at Bermuda and captures the springtime day-to-day variability (r = 0.82, n = 122, p < 0.001) driven by high-ozone events. We find that transport of North American pollution behind cold fronts is the principal contributor to springtime surface ozone at Bermuda and is responsible for all the high-ozone events. The model reproduces the observed positive correlations of surface ozone with 7Be and 210Pb at Bermuda; the correlation with 7Be reflects the strong subsidence behind cold fronts, resulting in the mixing of middle-tropospheric air with continental outflow in the air arriving at Bermuda, as indicated by the positive 7Be-210Pb correlation. This mixing appears to have been an obfuscating factor in past interpretations of subsiding back-trajectories at Bermuda as evidence for a stratospheric or upper tropospheric origin for ozone. Isentropic back-trajectories computed in our model reproduce the previously reported subsidence associated with high-ozone events. Even in the free troposphere, we find that the stratosphere contributes less than 5 ppbv (<10%) to spring ozone over Bermuda. Positive O3-7Be and negative O3-210Pb correlations observed at Tenerife (28¿N, 16¿W, 2.4 km) in summer are reproduced by the model and are consistent with a middle-tropospheric source of ozone, not an upper tropospheric or stratospheric source as previously suggested. A regional budget for the North Atlantic in spring indicates that the stratosphere contributes less than 10 ppbv ozone (<5%) below 500 hPa, while the lower troposphere contributes 20--40 ppbv ozone throughout the troposphere. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Atmospheric Composition and Structure, Constituent sources and sinks, Atmospheric Composition and Structure, Pollution--urban and regional, Atmospheric Composition and Structure, Troposphere--composition and chemistry, Atmospheric Composition and Structure, Troposphere--constituent transport and chemistry |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|