EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Warneke et al. 2004
Warneke, C., de Gouw, J.A., Goldan, P.D., Kuster, W.C., Williams, E.J., Lerner, B.M., Jakoubek, R., Brown, S.S., Stark, H., Aldener, M., Ravishankara, A.R., Roberts, J.M., Marchewka, M., Bertman, S., Sueper, D.T., McKeen, S.A., Meagher, J.F. and Fehsenfeld, F.C. (2004). Comparison of daytime and nighttime oxidation of biogenic and anthropogenic VOCs along the New England coast in summer during New England Air Quality Study 2002. Journal of Geophysical Research 109: doi: 10.1029/2003JD004424. issn: 0148-0227.

Volatile organic compounds (VOCs) and some of their oxidants (O3, NO3) were measured on board the National Oceanic and Atmospheric Administration research ship R/V Ronald H. Brown along the coast of New England, downwind of New York, Boston, and Portsmouth and large forested areas in New Hampshire, Maine, and Massachusetts in July and August 2002. The diurnal variations of isoprene, monoterpenes, and aromatics were mainly dependent on their emissions and the abundance of the oxidants OH and NO3. Elevated mixing ratios of short-lived VOCs were only encountered at the ship, which was about 1--6 hours downwind of the sources, when the concentrations of the oxidants were low. For the biogenic compounds this was generally the case during morning and evening hours, when the lifetime of the biogenics was long because of low OH and NO3 concentrations. Most anthropogenic VOCs do not react with NO3, and therefore their mixing ratios remained elevated during the night. The products of isoprene oxidation, methyl vinyl ketone, methacrolein, and peroxymethacrylic nitric anhydride (MPAN) were, on average, more abundant than isoprene itself. Only during the transition periods from day to night, when oxidation rates were at a minimum, could isoprene exceed its products. The loss of the biogenic VOCs was dominated by reactions with NO3, whereas the loss of anthropogenics came mostly from reactions with OH. The oxygenated VOCs are the major contributor to the OH loss, except in close vicinity of emission sources. The total loss of biogenic compounds during the night was so effective that after one night of transport they were in most cases completely reacted away, whereas the mixing ratios of the anthropogenic compounds remained high during the night. The pool of reactive hydrocarbons at sunrise was thus typically dominated by anthropogenic VOCs.

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Biosphere/atmosphere interactions, Atmospheric Composition and Structure, Constituent sources and sinks, Atmospheric Composition and Structure, Pollution—urban and regional, Atmospheric Composition and Structure, Troposphere—composition and chemistry, Atmospheric Composition and Structure, Troposphere—constituent transport and chemistry, VOCs, New England, oxidation
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit