EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Edson et al. 2004
Edson, J.B., Zappa, C.J., Ware, J.A., McGillis, W.R. and Hare, J.E. (2004). Scalar flux profile relationships over the open ocean. Journal of Geophysical Research 109: doi: 10.1029/2003JC001960. issn: 0148-0227.

The most commonly used flux-profile relationships are based on Monin-Obukhov (MO) similarity theory. These flux-profile relationships are required in indirect methods such as the bulk aerodynamic, profile, and inertial dissipation methods to estimate the fluxes over the ocean. These relationships are almost exclusively derived from previous field experiments conducted over land. However, the use of overland measurements to infer surface fluxes over the ocean remains questionable, particularly close to the ocean surface where wave-induced forcing can affect the flow. This study investigates the flux profile relationships over the open ocean using measurements made during the 2000 Fluxes, Air-Sea Interaction, and Remote Sensing (FAIRS) and 2001 GasEx experiments. These experiments provide direct measurement of the atmospheric fluxes along with profiles of water vapor and temperature. The specific humidity data are used to determine parameterizations of the dimensionless gradients using functional forms of two commonly used relationships. The best fit to the Businger-Dyer relationship <Businger, 1988> is found using an empirical constant of aq = 13.4 ¿ 1.7. The best fit to a formulation that has the correct form in the limit of local free convection Wyngaard, 1973> is found using aq = 29.8 ¿ 4.6. These values are in good agreement with the consensus values from previous overland experiments and the Coupled Ocean-Atmosphere Response Experiment (COARE) 3.0 bulk algorithm <Fairall et al., 2003>; e.g., the COARE algorithm uses empirical constants of 15 and 34.2 for the Businger-Dyer and convective forms, respectively. Although the flux measurements were made at a single elevation and local similarity scaling is applied, the good agreement implies that MO similarity is valid within the marine atmospheric surface layer above the wave boundary layer.

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Air/sea constituent fluxes (3339, 4504), Global Change, Water cycles, Meteorology and Atmospheric Dynamics, Boundary layer processes, Oceanography, General, Marine meteorology, air-sea fluxes, flux profile relationships, marine boundary layer
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit