|
Detailed Reference Information |
Fujii, R., Iijima, T., Potemra, T.A. and Sugiura, M. (1981). Seasonal dependence of large-scale Birkeland currents. Geophysical Research Letters 8: doi: 10.1029/GL008i010p01103. issn: 0094-8276. |
|
The seasonal dependence of large-scale Birkeland currents has been determined from the analysis of vector magnetic field data acquired by the TRIAD satellite in the northern hemisphere. Statistical characteristics of single sheet (i.e., net currents) and double sheet Birkeland currents were determined from 555 TRIAD passes during the summer, and 408 passes during the winter (more complicated multiple-sheet current systems were not included in this study). The average Kp value for the summer events is 1.9 and for the winter events is 2.0. The principal results include the following: (1) The single sheet Birkeland currents are statistically observed more often than the double sheet currents in the dayside of the auroral zone during any season. The single sheet currents are also observed more often in the summer than in the winter (as much as 2 to 3 times as often depending upon the MLT sector). (2) The intensities of the single and double sheet Birkeland currents on the dayside, from approximately 1000 MLT to 1800 MLT, are larger during the summer (in comparison to winter) by a factor of about 2. (3) The intensities of the double sheet Birkeland currents in the nightside (the dominant system in this local time) do not show a significant difference from summer to winter. (4) The single and double sheet currents in the dayside (between 0600 and 1800 MLT) appear at higher latitudes (by about 1¿ to 3¿) during the summer in comparison to the winter. These characterisctis suggest that the Birkeland current intensities are controlled by the ionosphere conductivity in the polar region. The greater occurrence of single sheet Birkeland currents during the summertime supports the suggestion that these currents close via the polar cap when the conductivity there is sufficiently high to permit it. Since the intensities of Birkeland currents are larger during periods of greater ionospheric conductivity, an important source (but perhaps not the only source) of these currents must be a voltage generator in the magnetosphere, possibly related to the convective electric field. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|