EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Bizzarri & Cocco 2006
Bizzarri, A. and Cocco, M. (2006). A thermal pressurization model for the spontaneous dynamic rupture propagation on a three-dimensional fault: 2. Traction evolution and dynamic parameters. Journal of Geophysical Research 111: doi: 10.1029/2005JB003864. issn: 0148-0227.

We investigate the dynamic traction evolution during the spontaneous propagation of a 3-D earthquake rupture governed by slip-weakening or rate- and state-dependent constitutive laws and accounting for thermal pressurization effects. The analytical solutions as well as temperature and pore pressure evolutions are discussed in the companion paper by Bizzarri and Cocco. Our numerical experiments reveal that frictional heating and thermal pressurization modify traction evolution. The breakdown stress drop, the characteristic slip-weakening distance, and the fracture energy depend on the slipping zone thickness (2w) and hydraulic diffusivity (ω). Thermally activated pore pressure changes caused by frictional heating yield temporal variations of the effective normal stress acting on the fault plane. In the framework of rate- and state-dependent friction, these thermal perturbations modify both the effective normal stress and the friction coefficient. Breakdown stress drop, slip-weakening distance, and specific fracture energy (J/m2) increase for decreasing values of hydraulic diffusivity and slipping zone thickness. We propose scaling relations to evaluate the effect of w and ω on these physical parameters. We have also investigated the effects of choosing different evolution laws for the state variable. We have performed simulations accounting for the porosity evolution during the breakdown time. Our results point out that thermal pressurization modifies the shape of the slip-weakening curves. For particular configurations, the traction versus slip curves display a gradual and continuous weakening for increasing slip: in these cases, the definitions of a minimum residual stress and the slip-weakening distance become meaningless.

BACKGROUND DATA FILES

Abstract

Keywords
Seismology, Earthquake dynamics, Seismology, Theory, Seismology, Computational seismology
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit