|
Detailed Reference Information |
Emmanuel, S. and Berkowitz, B. (2007). Effects of pore-size controlled solubility on reactive transport in heterogeneous rock. Geophysical Research Letters 34: doi: 10.1029/2006GL028962. issn: 0094-8276. |
|
Pore-size controlled solubility (PCS) is incorporated into continuum equations for fluid transport and porosity evolution. The physical properties of a porous domain, in particular pore-size, can modify the effective solubility of minerals, allowing highly supersaturated fluids to exist within submicron-scale pores of rocks; when fluid flows from small pores into larger ones, or vice versa, precipitation or dissolution may occur. Using numerical simulations, we demonstrate that the PCS mechanism can account for the filling of large pore spaces during transport though a heterogeneous rock matrix. Furthermore, depending on flow and initial conditions, the steady state porosity patterns that develop may be heterogeneous. The mechanism is expected to be of significance during diagenesis and fracture mineralization. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Geochemistry, Geochemical modeling (3610, 8410), Geochemistry, Reactions and phase equilibria (3612, 8412), Hydrology, Groundwater transport, Physical Properties of Rocks, Transport properties, Physical Properties of Rocks, Permeability and porosity |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|